研究生: |
黃政文 Huang, Cheng-Wen |
---|---|
論文名稱: |
Tequila基因調控果蠅壽命之機制 Mechanism of Tequila regulates lifespan in Drosophila melanogaster |
指導教授: |
王培育
Wang, Pei-Yu 汪宏達 Wang, Horng-Dar |
口試委員: |
喻秋華
傅在峰 吳嘉霖 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | Tequila基因 、壽命 、胰島素 、果蠅 |
外文關鍵詞: | Tequila, Lifespan, Insulin, Drosophila |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飲食節制是目前最為人所知延長壽命的方式,在無脊椎動物和脊椎動物都可以觀察到降低飲食攝取量而達到延壽的效果,而且飲食節制在很多的生物體已被證實會降低胰島素的訊號傳遞。我們利用基因表現的方式去分析類似飲食節制表現的Indy突變果蠅,並發現Tequila具有潛力成為新的調控壽命基因。先前研究證實Tequila是一種與哺乳動物同源的神經性胰蛋白脢,調控果蠅長期記憶的形成。我們發現Tequila基因突變和在分泌胰島素的神經細胞中降低Tequila表現量兩者都能誘發延長果蠅壽命的效果。此結果顯示Tequila基因缺失所誘發的長壽現象可能和胰島素訊號傳遞有關,因Teqf01792突變果蠅表現出許多胰島素功能缺失的現象,包括降低循環中第二型類胰島素(Dilp2)的含量、下游AKT分子的磷酸化、體重和改變葡萄醣代謝。這些觀察暗示Tequila誘發壽命延長可能是透由調控胰島素的訊號傳遞。
Dietary restriction (DR), an intervention commonly used to extend lifespan of both invertebrates and vertebrates, has been shown to reduce insulin/insulin growth factor signaling (IIS) in various organisms. We analyzed the high-throughput gene expression profiling of DR-like Indy mutants and identified Tequila as a candidate gene involved in lifespan regulation. Previous studies have shown that Tequila, a neurotrypsin ortholog, could regulate long-term memory (LTM) formation in Drosophila melanogaster. We found that both hypomorphic mutation of Tequila (Teqf01792), as well as cell-specific down-regulation of Tequila in insulin-producing neurons, significantly induced lifespan extension. Tequila deficiency-induced longevity is likely related to insulin signaling since Teqf01792 mutant flies has displayed several phenotypes of insulin dysfunction, including reduced the level of circulating Drosophila insulin-like peptide 2 (Dilp2), downstream AKT phosphorylation, body weight and altered glucose metabolism. These observations suggest that Tequila may induce lifespan extension through regulation of insulin signaling pathways.
Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.
Baruah, A., Chang, H., Hall, M., Yuan, J., Gordon, S., Johnson, E., Shtessel, L.L., Yee, C., Hekimi, S., Derry, W.B., et al. (2014). CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants. PLoS Genet 10, e1004097.
Bass, T.M., Grandison, R.C., Wong, R., Martinez, P., Partridge, L., and Piper, M.D. (2007). Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62, 1071-1081.
Birkenfeld, A.L., Lee, H.Y., Guebre-Egziabher, F., Alves, T.C., Jurczak, M.J., Jornayvaz, F.R., Zhang, D., Hsiao, J.J., Martin-Montalvo, A., Fischer-Rosinsky, A., et al. (2011). Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 14, 184-195.
Blum, A.L., Li, W., Cressy, M., and Dubnau, J. (2009). Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 19, 1341-1350.
Bodkin, N.L., Alexander, T.M., Ortmeyer, H.K., Johnson, E., and Hansen, B.C. (2003). Mortality and morbidity in laboratory-maintained Rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci 58, 212-219.
Bodkin, N.L., Ortmeyer, H.K., and Hansen, B.C. (1995). Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J Gerontol A Biol Sci Med Sci 50, B142-147.
Bowen, R.L., and Atwood, C.S. (2004). Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50, 265-290.
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11, 213-221.
Broughton, S., Alic, N., Slack, C., Bass, T., Ikeya, T., Vinti, G., Tommasi, A.M., Driege, Y., Hafen, E., and Partridge, L. (2008). Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 3, e3721.
Broughton, S.J., Piper, M.D., Ikeya, T., Bass, T.M., Jacobson, J., Driege, Y., Martinez, P., Hafen, E., Withers, D.J., Leevers, S.J., et al. (2005). Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102, 3105-3110.
Broughton, S.J., Slack, C., Alic, N., Metaxakis, A., Bass, T.M., Driege, Y., and Partridge, L. (2010). DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9, 336-346.
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Brunner, E., Ahrens, C.H., Mohanty, S., Baetschmann, H., Loevenich, S., Potthast, F., Deutsch, E.W., Panse, C., de Lichtenberg, U., Rinner, O., et al. (2007). A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol 25, 576-583.
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482-485.
Butler, J.A., Mishur, R.J., Bhaskaran, S., and Rea, S.L. (2013). A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging Cell 12, 130-138.
Cahill, C.M., Tzivion, G., Nasrin, N., Ogg, S., Dore, J., Ruvkun, G., and Alexander-Bridges, M. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276, 13402-13410.
Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., Tully, T., and Chiang, A.S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335, 678-685.
Chou, H.-J., Lai, D.-M., Huang, C.-W., McLennan, I.S., Wang, H.-D., and Wang, P.-Y. (2013). BMP4 Is a Peripherally-Derived Factor for Motor Neurons and Attenuates Glutamate-Induced Excitotoxicity In Vitro. PLoS ONE 8, e58441.
Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106.
Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T.M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201-204.
Colomb, J., Kaiser, L., Chabaud, M.A., and Preat, T. (2009). Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation. Genes Brain Behav 8, 407-415.
Colombani, J., Andersen, D.S., and Leopold, P. (2012). Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336, 582-585.
David, J., Van Herrewege, J., and Fouillet, P. (1971). Quantitative under-feeding of Drosophila: effects on adult longevity and fecundity. Exp Gerontol 6, 249-257.
Didelot, G., Molinari, F., Tchénio, P., Comas, D., Milhiet, E., Munnich, A., Colleaux, L., and Preat, T. (2006a). Tequila, a Neurotrypsin Ortholog, Regulates Long-Term Memory Formation in Drosophila. Science 313, 851-853.
Didelot, G., Molinari, F., Tchenio, P., Comas, D., Milhiet, E., Munnich, A., Colleaux, L., and Preat, T. (2006b). Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila. Science 313, 851-853.
Edrey, Y.H., Oddo, S., Cornelius, C., Caccamo, A., Calabrese, V., and Buffenstein, R. (2014). Oxidative damage and amyloid-beta metabolism in brain regions of the longest-lived rodents. J Neurosci Res 92, 195-205.
Fei, Y.J., Inoue, K., and Ganapathy, V. (2003). Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278, 6136-6144.
Fowler, N.R., Perkins, A.J., Turchan, H.A., Frame, A., Monahan, P., Gao, S., and Boustani, M.A. (2015). Older primary care patients' attitudes and willingness to screen for dementia. J Aging Res 2015, 423265.
Garelli, A., Gontijo, A.M., Miguela, V., Caparros, E., and Dominguez, M. (2012). Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336, 579-582.
Giannakou, M.E., Goss, M., and Partridge, L. (2008). Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7, 187-198.
Goguel, V., Belair, A.L., Ayaz, D., Lampin-Saint-Amaux, A., Scaplehorn, N., Hassan, B.A., and Preat, T. (2011). Drosophila amyloid precursor protein-like is required for long-term memory. J Neurosci 31, 1032-1037.
Gronke, S., Clarke, D.F., Broughton, S., Andrews, T.D., and Partridge, L. (2010). Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6, e1000857.
Haselton, A., Sharmin, E., Schrader, J., Sah, M., Poon, P., and Fridell, Y.W. (2010). Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance. Cell Cycle 9, 3063-3071.
Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., Cervera, P., and Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187.
Ikeya, T., Galic, M., Belawat, P., Nairz, K., and Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12, 1293-1300.
Inoue, K., Fei, Y.J., Huang, W., Zhuang, L., Chen, Z., and Ganapathy, V. (2002). Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J 367, 313-319.
Kamo, T., Akazawa, H., and Komuro, I. (2015). Pleiotropic Effects of Angiotensin II Receptor Signaling in Cardiovascular Homeostasis and Aging. Int Heart J 56, 249-254.
Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14, 885-890.
Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464.
Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128.
Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344-348.
Lin, W.S., Chen, J.Y., Wang, J.C., Chen, L.Y., Lin, C.H., Hsieh, T.R., Wang, M.F., Fu, T.F., and Wang, P.Y. (2014). The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr) 36, 689-703.
Lin, Y.J., Seroude, L., and Benzer, S. (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943-946.
Lopez-Martinez, G., and Hahn, D.A. (2014). Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS One 9, e88128.
Luong, N., Davies, C.R., Wessells, R.J., Graham, S.M., King, M.T., Veech, R., Bodmer, R., and Oldham, S.M. (2006). Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 4, 133-142.
Mair, W., Goymer, P., Pletcher, S.D., and Partridge, L. (2003). Demography of dietary restriction and death in Drosophila. Science 301, 1731-1733.
McCay, C.M. (1935). Iodized Salt a Hundred Years Ago. Science 82, 350-351.
McCay, C.M., Crowell, M.F., and Maynard, L.A. (1989). The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 155-171; discussion 172.
Min, K.J., Yamamoto, R., Buch, S., Pankratz, M., and Tatar, M. (2008). Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7, 199-206.
Moulton, C.D., Stewart, R., Amiel, S.A., Laake, J.P., and Ismail, K. (2015). Factors associated with cognitive impairment in patients with newly diagnosed type 2 diabetes: a cross-sectional study. Aging Ment Health, 1-8.
Muid, K.A., Karakaya, H.C., and Koc, A. (2014). Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process. Biochem Biophys Res Commun 444, 260-263.
Munier, A.I., Medzhitov, R., Janeway, C.A., Jr., Doucet, D., Capovilla, M., and Lagueux, M. (2004a). graal: a Drosophila gene coding for several mosaic serine proteases. Insect Biochem Mol Biol 34, 1025-1035.
Munier, A.I., Medzhitov, R., Janeway Jr, C.A., Doucet, D., Capovilla, M., and Lagueux, M. (2004b). graal: a Drosophila gene coding for several mosaic serine proteases. Insect Biochemistry and Molecular Biology 34, 1025-1035.
Neff, F., Flores-Dominguez, D., Ryan, D.P., Horsch, M., Schroder, S., Adler, T., Afonso, L.C., Aguilar-Pimentel, J.A., Becker, L., Garrett, L., et al. (2013). Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123, 3272-3291.
Neretti, N., Wang, P.Y., Brodsky, A.S., Nyguyen, H.H., White, K.P., Rogina, B., and Helfand, S.L. (2009). Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage. Proc Natl Acad Sci U S A 106, 2277-2282.
Orso, G., Martinuzzi, A., Rossetto, M.G., Sartori, E., Feany, M., and Daga, A. (2005). Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. The Journal of clinical investigation 115, 3026-3034.
Placais, P.Y., and Preat, T. (2013). To favor survival under food shortage, the brain disables costly memory. Science 339, 440-442.
Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118.
Rogina, B., Reenan, R.A., Nilsen, S.P., and Helfand, S.L. (2000). Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290, 2137-2140.
Rulifson, E.J., Kim, S.K., and Nusse, R. (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118-1120.
Steiner, D.F., and Oyer, P.E. (1967). The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci U S A 57, 473-480.
Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.
Trannoy, S., Redt-Clouet, C., Dura, J.M., and Preat, T. (2011). Parallel processing of appetitive short- and long-term memories in Drosophila. Curr Biol 21, 1647-1653.
Wang, P.-Y., Koishi, K., McGeachie, A.B., Kimber, M., MacLaughlin, D.T., Donahoe, P.K., and McLennan, I.S. (2005). Mullerian Inhibiting Substance acts as a motor neuron survival factor in vitro. Proc Natl Acad Sci U S A 102, 16421-16425.
Wang, P.Y., Neretti, N., Whitaker, R., Hosier, S., Chang, C., Lu, D., Rogina, B., and Helfand, S.L. (2009). Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci U S A 106, 9262-9267.
Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4, e13.
Zambrano, A., Garcia-Carpizo, V., Gallardo, M.E., Villamuera, R., Gomez-Ferreria, M.A., Pascual, A., Buisine, N., Sachs, L.M., Garesse, R., and Aranda, A. (2014). The thyroid hormone receptor beta induces DNA damage and premature senescence. J Cell Biol 204, 129-146.
Zou, S., Meadows, S., Sharp, L., Jan, L.Y., and Jan, Y.N. (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A 97, 13726-13731.