簡易檢索 / 詳目顯示

研究生: 邱顯明
Chiu, Hsien-Ming
論文名稱: 一維鎵摻雜氧化鋅奈米塔: 晶體成長機制至性質與應用
One-dimensional Gallium-doped Zinc Oxide Nanopagodas: From Growth Mechanism to Properties and Applications
指導教授: 吳振名
Wu, Jenn-Ming
口試委員: 吳振名
裘性天
吳文偉
朱英豪
李奕賢
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 191
中文關鍵詞: 氧化鋅金屬-有機化學氣相沉積法奈米結構p-n同質接面光催化
外文關鍵詞: ZnO, MOCVD, nanostructures, p-n homojunctions, photocatalysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅是II–VI族n型半導體,也是追求下一個世代電子和光子奈米元件用來取代矽的好候選材料之一。一維奈米結構,例如線、柱、管、環、帶、針,由於其獨特的性質,例如高寬高比與大表面積,在製造電子、光學、光電、電化學奈米元件上是相當好的材料。在本研究中,我們成功地利用金屬-有機化學氣相沉積法在鎵摻雜氧化鋅種子層/矽基板上製造出具有大面積、良好垂直性、單晶結構的鎵摻雜氧化鋅奈米塔陣列結構。
    我們發現鎵原子在奈米柱側面晶面將{1-100}轉化成兩組({11-21}, {11-2-2})和({-2201}, {-110-1}),最後形成塔狀結構,扮演著一極重要的關鍵角色。經由理論模擬計算的結果得知,鎵原子可以降低({11-21}, {11-2-2})和({-2201}, {-110-1})的表面能;然而會增加{1-100}的表面能。此外,我們提出一個新的成長模型,藉由理論模擬計算在鎵摻雜後改變表面能的結果,來解釋如何從平滑的奈米柱{1-100}平面轉化成具皺褶狀的奈米塔({11-21}, {11-2-2})和({-2201}, {-110-1})平面。根據低溫陰極發光和光激發光光譜得知,鎵摻雜氧化鋅奈米塔擁有極好的晶體品質。
    暴露晶面的種類強烈的影響其性質與表面活性。我們也研究了鎵摻雜氧化鋅奈米塔與氧化鋅奈米線其光電性質與其化學反應性。紫外光光偵測器的反應結果證明鎵摻雜氧化鋅奈米塔比氧化鋅奈米線不但具有更快速的電子-電洞產生與再結合速率,也同時具有更好的光催化活性。鎵摻雜氧化鋅奈米塔增進其效能是因為{11-21}, {11-22}, {-2201}, {-1101}平面相較於{10-10}和{11-20}平面更能增強氧氣和水的化學吸附活性。
    為了追求高注入電流效率二極體奈米元件,全一維共軸氧化鋅p-n同質接面奈米結構是其中一種理想結構。我們將p型銀摻雜氧化鋅奈米結構殼包覆在n型鎵摻雜氧化鋅奈米塔核上,合成出全一維共軸氧化鋅p-n同質接面二極體。全一維的p-n銀-鎵摻雜氧化鋅和銀摻雜氧化鋅-氧化鋅共軸奈米結構相較於全二維或二維-一維p-n同質和/或異質接面二極體,具有更優秀的二極體特性表現,如更低開啟電場、更好的整流效率與理想因子。藉由低溫和變溫光激發光光譜技術分別可測得鎵和銀的束縛能。另比較銀-鎵摻雜氧化鋅又比銀摻雜氧化鋅-氧化鋅p-n同質接面奈米結構表現出更好的二極體特性。
    最後,利用原子層沉積法沉積白金奈米粒子在一維鎵摻雜氧化鋅奈米塔上形成白金/鎵摻雜氧化鋅奈米複材。沉積上去的白金奈米粒子比傳統的濕化學法好,均勻且分散很好的分佈在鎵摻雜氧化鋅奈米塔表面上。白金/鎵摻雜氧化鋅奈米複材在30個原子層沉積循環時有顯著的改善光催化活性,在波長254奈米的紫外光照射下,其催化活性比純鎵摻雜氧化鋅奈米塔大約增加了2.7倍。我們從各種光催化機制去探討白金奈米粒子對光催化活性的影響。由於修飾的白金奈米粒子在光學吸收/穿透、電子-電動對分離/再結合、與區域表面電漿共振有競爭效應,因此,在白金奈米粒子含量上有一個最佳值,可以使一維白金/鎵摻雜氧化鋅奈米複材達到一個最大的光催化活性。
    從基礎晶體成長機制研究到多方面的嶄新奈米元件應用,例如場發射子、單根奈米線場效電晶體、紫外光光偵測器、與光觸媒,鎵摻雜氧化鋅奈米塔比純氧化鋅奈米線具備更好的效果與性質。鎵摻雜氧化鋅奈米塔提供了一個追求下一個世代奈米元件應用上更好的另一種選擇平台。


    Contents I Abstract VI 摘要 IX Chapter 1: Introduction I: Nanotechnology, Nanoscience, and Nanomaterials 1.1 Nanotechnology, nanoscience, and nanomaterials 1 1.2 Features of nanomaterials 3 1.2.1 Quantum tunnelling effect 3 1.2.2 Quantum confinement effect 3 1.2.3 Quantisation of energy 4 1.2.4 Surface effect 5 1.2.5 Coulomb blockade 6 Chapter 2: Introduction II: Zinc Oxide – Properties and Applications 2.1 Crystal structure, chemical bonding, and basic properties 15 2.1.1 Crystal structure 15 2.1.2 Chemical bonding 16 2.1.3 Basic properties 16 2.2 Synthesis of 1D ZnO nanostructures 16 2.2.1 Strategies for achieving 1D growth 17 2.2.2 Chemical vapor deposition (CVD) 17 2.2.3 Metal-organic chemical vapor deposition (MOCVD) 19 2.2.4 Molecular beam epitaxy (MBE) 19 2.2.5 Pulsed laser deposition (PLD) 20 2.2.6 Aqueous chemical growth (ACG) (or Hydrothermal) 20 2.2.7 Electrodeposition 21 2.3 N- and p-type doping of ZnO 22 2.3.1 N-type doping of ZnO 22 2.3.2 P-type doping of ZnO 23 2.4 Optical properties and defect chemistry of ZnO 24 2.4.1 Optical properties of ZnO 24 2.4.1.1 Free excitons and polaritons 25 2.4.1.2 Bound excitons 26 2.4.1.3 Two-electron satellites (TES) 27 2.4.1.4 Donor-acceptor-pair (DAP) and longitudinal optical (LO)-phonon replicas 27 2.4.2 Defect chemistry of ZnO 28 2.5 Applications of 1D ZnO nanostructures 29 2.5.1 Field emitter 29 2.5.2 Photo- and gas sensors 30 2.5.3 Diodes and light-emitting diodes (LED) 30 2.5.4 Laser 31 2.5.5 Solar cells 32 Chapter 3: Experimental Procedures 3.1 Deposition of GZO seed layer 53 3.2 Growth of GZO nanostructures 53 3.3 Characteristic measurements 54 3.3.1 Structure and morphology analysis 54 3.3.1.1 Scanning electron microscope (SEM) 54 3.3.1.2 (Scanning) transmission electron microscope (TEM/STEM) 55 3.3.1.3 X-ray diffraction (XRD) 56 3.3.2 Chemical composition and binding state analysis 56 3.3.2.1 Energy dispersive X-ray spectroscopy (EDS) 56 3.3.2.2 Auger electron spectroscopy (AES) 57 3.3.2.3 X-ray photoelectron spectroscopy (XPS) 57 3.3.3 Optical and electrical properties 58 3.3.3.1 Cathodoluminescence (CL) and photoluminescence (PL) 58 3.3.3.2 Electrical measurements 58 Chapter 4: Experimental and Computational Insights in the Growth of Gallium-Doped Zinc Oxide Nanostructures with Superior Field Emission Properties 4.1 Introduction 61 4.2 Experimental Procedures 63 4.2.1 Electrical measurements of GZO and ZnO nanostructures 63 4.2.2 Computational simulation 64 4.3 Results and Discussion 64 4.3.1 The effects of the growth temperature on GZO nanostructures 64 4.3.2 The effects of the Ga/Zn molar ratios on GZO nanostructures 66 4.3.3 The time evolution and spatial epitaxial orientation of the GZO nanostructures 68 4.3.4 Computational simulation of surface energies of GZO nanostructures 73 4.3.5 Optical and electrical properties of GZO nanostructures 74 4.4 Conclusions 78 Chapter 5: Opto-Electrical Properties and Chemisorption Reactivity of Ga-doped ZnO Nanopagodas 5.1 Introduction 94 5.2 Experimental Procedures 96 5.2.1 Electrical transport properties measured by three-terminal SWFET devices 96 5.2.2 Opto-electrical response of two-terminal UV PD devices 97 5.2.3 Photocatalytic activity of GZO and ZnO nanostructures array 97 5.3 Results and Discussion 97 5.3.1 Morphologies of ZnO NWs and GZO NPGs 98 5.3.2 Electrical transport properties of GZO NPGs 99 5.3.3 Opto-electrical properties of ZnO NWs and GZO NPGs 101 5.3.4 Photocatalytic activity of ZnO NWs and GZO NPGs 105 5.3.5 Chemisorption reactivity of ZnO NWs and GZO NPGs crystal planes 108 5.4 Conclusions 112 Chapter 6: Synthesis and Characterization of One-Dimensional Ag-doped ZnO/Ga-doped ZnO Coaxial Nanostructure Diodes 6.1 Introduction 125 6.2 Experimental Procedures 127 6.2.1 Growth and characterization of SZO-GZO coaxial core-shell nanostructures 127 6.2.2 Electrical properties of two-terminal SZO-GZO coaxial core-shell nanodevices 128 6.3 Results and Discussion 128 6.4 Conclusions 139 Chapter 7: Fabrication and Characterization of Well-dispersed Plasmonic Pt Nanoparticles on Ga-doped ZnO Nanopagodas Array with Enhanced Photocatalytic Activity 7.1 Introduction 148 7.2 Experimental Procedures 150 7.2.1 Decoration of Pt NPs 150 7.2.2 Photocatalytic activities of Pt/GZO hybrid nanocomposites 151 7.3 Results and Discussion 151 7.3.1 Characteristics of Pt/GZO hybrid nanocomposites 151 7.3.2 Photocatalytic activities of Pt/GZO hybrid nanocomposites 154 7.3.3 Photocatalytic mechanisms of Pt/GZO hybrid nanocomposites 157 7.4 Conclusions 163 Chapter 8: Conclusions 175 References: 178

    [1] N. Taniguchi, “On the basic concept of nanotechnology”, Proc. Intl. Conf. Prod, Part-II, 1974, 18.
    [2] K. E. Drexler, “Engines of creation: The coming era of nanotechnology”, Doubleday, London, 1986.
    [3] G. M. Whitesides, Small, 2005, 1, 172.
    [4] K. L. Wang, J. Nanosci. Nanotechnol., 2002, 2, 235.
    [5] M. G. Bawendi, M. L. Steigerwald and L. E. Brus, Annu. Rev. Phys. Chem., 1990, 41, 477.
    [6] B. L. Altshuler and P. A. Lee, Physics Today, 1988, 41, 36.
    [7] R. Kubo, J. Phys. Soc. Jpn., 1962, 17, 975.
    [8] A. Kawabata and R. Kubo, J. Phys. Soc. Jpn., 1966, 21, 1765.
    [9] A. C. Shi and R. I. Masel, J. Catal., 1989, 120, 421.
    [10] L. M. Falicov and G. A. Somorjai, Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2207.
    [11] L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander and L. R. Wallenberg, Physica E, 2004, 21, 560.
    [12] http://www.nano.gov/nanotech-101.
    [13] http://dc395.4shared.com/doc/HyqEjDnV/preview.html.
    [14]http://nanoyou.eu/en/nano-educators/teacher-training-kits.html?view=alphacontent.
    [15]http://www.sigmaaldrich.com/materials-science/nanomaterials/quantum-dots.html
    [16] http://eng.thesaurus.rusnano.com/wiki/article1429.
    [17] Z. L. Wang, Materials Science & Engineering R, 2009, 64, 33.
    [18] C. Klingshirn, ChemPhysChem, 2007, 8, 782.
    [19] Y. Ding, X. Y. Kong and Z. L. Wang, Phys. Rev. B, 2004, 70, 235408.
    [20] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, Prog. Mater. Sci., 2005, 50, 293.
    [21] L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today, 2007, 10, 40.
    [22] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and Y. Q. Yan, Adv. Mater., 2003, 15, 353.
    [23] J. H. Zeng, Y. L. Yu, Y. F. Wang and T. J. Lou, Acta Mater., 2009, 57, 1813.
    [24] N. S. Ramgir, D. J. Late, A. B. Bhise, M. A. More, I. S. Mulla, D. S. Joag and K. Vijayamohanan, J. Phys. Chem. B, 2006, 110, 18236.
    [25] J. H. Song, X. D. Wang, E. Riedo and Z. L. Wang, J. Phys. Chem. B, 2005, 109, 9869.
    [26] J.-H. Park and J.-G. Park, Curr. Appl. Phys., 2006, 6, 1020.
    [27] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang, Adv. Mater., 2001, 13, 113.
    [28] Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 2003, 13, 9.
    [29] Z. Z. Ye, J. Y. Huang, W. Z. Xu, J. Zhou and Z. L. Wang, Solid State Commun., 2007, 141, 464.
    [30] M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard and D. L. S. Dang, Nanotechnology, 2009, 20, 332001.
    [31] G. Perillat-Merceroz, P. H. Jouneau, G. Feuillet, R. Thierry, M. Rosina and P. Ferret, 16th International Conference on Microscopy of Semiconducting Materials, eds. T. Walther, P. D. Nellist, J. L. Hutchison and A. G. Cullis, 2010, 012034.
    [32] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys., 2005, 98, 041301.
    [33] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, Appl. Phys. Lett., 1999, 75, 980.
    [34] M. A. Verges, A. Mifsud and C. J. Serna, J. Chem. Soc., Faraday Trans., 1990, 86, 959.
    [35] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, J. Phys. Chem. B, 2001, 105, 3350.
    [36] S. Peulon and D. Lincot, Adv. Mater., 1996, 8, 166.
    [37] M. Izaki and T. Omi, Appl. Phys. Lett., 1996, 68, 2439.
    [38] B. Postels, A. Bakin, H. H. Wehmann, M. Suleiman, T. Weimann, P. Hinze and A. Waag, Appl. Phys. A, 2008, 91, 595.
    [39] Q. P. Chen, M. Z. Xue, Q. R. Sheng, Y. G. Liu and Z. F. Ma, Electrochem. Solid-State Lett., 2006, 9, C58.
    [40] W. Walukiewicz, Phys. Rev. B, 1994, 50, 5221.
    [41] C. G. Vandewalle, D. B. Laks, G. F. Neumark and S. T. Pantelides, Phys. Rev. B, 1993, 47, 9425.
    [42] A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause and H. O. Everitt, Phys. Rev. B, 2004, 70, 195207.
    [43] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Status Solidi B, 2004, 241, 231.
    [44] K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag and R. Sauer, Physica B, 2001, 308, 945.
    [45] C.-T. Lee, Materials, 2010, 3, 2218.
    [46] J. Hu and B. C. Pan, J. Chem. Phys., 2008, 129, 154706.
    [47] M. A. Reshchikov, H. Morkoc, B. Nemeth, J. Nause, J. Xie, B. Hertog and A. Osinsky, Physica B, 2007, 401, 358.
    [48] D. C. Reynolds, D. C. Look and B. Jogai, Solid State Commun., 1996, 99, 873.
    [49] C. Kim, Y. J. Kim, E. S. Jang, G. C. Yi and H. H. Kim, Appl. Phys. Lett., 2006, 88, 093104.
    [50] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 1998, 395, 583.
    [51] L. Schmidt-Mende and M. Gratzel, Thin Solid Films, 2006, 500, 296.
    [52] J. E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S. D. Ogier, K. Carr, M. Graetzel and J. R. Durrant, Adv. Funct. Mater., 2006, 16, 1832.
    [53] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu and I. C. Chen, Adv. Funct. Mater., 2003, 13, 811.
    [54] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 2001, 292, 1897.
    [55] M. Willander, O. Nur, N. Bano and K. Sultana, New J. Phys., 2009, 11, 125020.
    [56] W. I. Park and G. C. Yi, Adv. Mater., 2004, 16, 87.
    [57] W. M. Kwok, A. B. Djurisic, Y. H. Leung, W. K. Chan and D. L. Phillips, Appl. Phys. Lett., 2005, 87, 093108.
    [58] A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin, Nano Lett., 2007, 7, 2183.
    [59] M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B, 2003, 107, 659.
    [60] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 2002, 81, 3648.
    [61] J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen and Z. L. Wang, Adv. Mater., 2006, 18, 650.
    [62] X. S. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, J. Mater. Chem., 2008, 18, 509.
    [63] Y. Y. Kim, B. H. Kong and H. K. Cho, J. Cryst. Growth, 2011, 330, 17.
    [64] L. W. Chang, J. W. Yeh, C. L. Cheng, F. S. Shieu and H. C. Shih, Appl. Surf. Sci., 2011, 257, 3145.
    [65] S. W. Kan, S. K. Mohanta, Y. Y. Kim and H. K. Cho, Cryst. Growth Des., 2008, 8, 1458.
    [66] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz and S. T. Lee, Adv. Mater., 2003, 15, 838.
    [67] H. K. Park, M. H. Oh, S. W. Kim, G. H. Kim, D. H. Youn, S. Lee, S. H. Kim, K. C. Kim and S. L. Maeng, Etri J., 2006, 28, 787.
    [68] Y. G. Zhang, F. Lu, Z. Y. Wang and L. D. Zhang, J. Phys. Chem. C, 2007, 111, 4519.
    [69] S. W. Chen and J. M. Wu, Acta Mater., 2011, 59, 841.
    [70] S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 2009, 10, 013001.
    [71] Y. C. Chang, W. C. Yang, C. M. Chang, P. C. Hsu and L. J. Chen, Cryst. Growth Des., 2009, 9, 3161.
    [72] M. C. Jeong, B. Y. Oh, W. Lee and J. M. Myoung, J. Cryst. Growth, 2004, 268, 149.
    [73] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba and K. Haga, Nanotechnology, 2004, 15, S382.
    [74] W. Il Park, Met. Mater.-Int., 2008, 14, 659.
    [75] T. Song, J. W. Choung, J. G. Park, W. Il Park, J. A. Rogers and U. Paik, Adv. Mater., 2008, 20, 4464.
    [76] G. Wang, Z. Z. Ye, H. P. He, H. P. Tang and J. S. Li, J. Phys. D: Appl. Phys., 2007, 40, 5287.
    [77] W. M. Haynes, “CRC Handbook of Chemistry & Physics”, Taylor and Francis Group, LLC, Boca Raton, Fla. London, 2010.
    [78] M. Thompson, “Auger Electron Spectroscopy”, Wiley, New York, 1985.
    [79] C. Kwak, B. H. Kim, C. I. Park, S. H. Park, S. Y. Seo, S. H. Kim and S. W. Han, J. Nanosci. Nanotechnol., 2010, 10, 912.
    [80] S. H. Na and C. H. Park, J. Korean Phys. Soc., 2009, 54, 867.
    [81] S. H. Na and C. H. Park, J. Korean Phys. Soc., 2010, 56, 498.
    [82] A. Wander and N. M. Harrison, Surf. Sci., 2000, 468, L851.
    [83] A. Wander and N. M. Harrison, Surf. Sci., 2000, 457, L342.
    [84] M. Kim, Y. J. Hong, J. Yoo, G. C. Yi, G. S. Park, K. J. Kong and H. Chang, Phys. Status Solidi RRL, 2008, 2, 197.
    [85] Y. J. Hong, J. Yoo, Y. J. Doh, S. H. Kang, K. J. Kong, M. Kim, D. R. Lee, K. H. Oh and G. C. Yi, J. Mater. Chem., 2009, 19, 941.
    [86] P. Li, S. H. Deng, L. Zhang, Y. B. Li, X. Y. Zhang and J. R. Xu, Comput. Mater. Sci., 2010, 50, 153.
    [87] M. J. Zhou, H. J. Zhu, Y. Jiao, Y. Y. Rao, S. Hark, Y. Liu, L. M. Peng and Q. Li, J. Phys. Chem. C, 2009, 113, 8945.
    [88] Z. S. Zhang, J. Y. Huang, H. P. He, S. S. Lin, H. P. Tang, H. M. Lu and Z. Z. Ye, Solid-State Electron., 2009, 53, 578.
    [89] Y. H. Huang, Y. Zhang, Y. S. Gu, X. D. Bai, J. J. Qi, Q. L. Liao and J. Liu, J. Phys. Chem. C, 2007, 111, 9039.
    [90] U. K. Gautam, L. S. Panchakarla, B. Dierre, X. S. Fang, Y. Bando, T. Sekiguchi, A. Govindaraj, D. Golberg and C. N. R. Rao, Adv. Funct. Mater., 2009, 19, 131.
    [91] F. J. Sheini, M. A. More, S. R. Jadkar, K. R. Patil, V. K. Pillai and D. S. Joag, J. Phys. Chem. C, 2010, 114, 3843.
    [92] H. Pan, Y. W. Zhu, H. Sun, Y. P. Feng, C. H. Sow and J. Y. Lin, Nanotechnology, 2006, 17, 5096.
    [93] C. X. Xu, X. W. Sun and B. J. Chen, Appl. Phys. Lett., 2004, 84, 1540.
    [94] J. A. Sans, J. F. Sanchez-Royo, A. Segura, G. Tobias and E. Canadell, Phys. Rev. B, 2009, 79, 195105.
    [95] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee and S. T. Lee, Adv. Mater., 2008, 20, 168.
    [96] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh and S. P. Chang, J. Electrochem. Soc., 2010, 157, K30.
    [97] J. P. Kar, S. N. Das, J. H. Choi, Y. A. Lee, T. Y. Lee and J. M. Myoung, J. Cryst. Growth, 2009, 311, 3305.
    [98] C. C. Huang, B. D. Pelatt and J. F. Conley, Nanotechnology, 2010, 21, 195307.
    [99] Z. Z. Han, L. Liao, Y. T. Wu, H. B. Pan, S. F. Shen and J. Z. Chen, J. Hazard. Mater., 2012, 217, 100.
    [100] D. D. Lin, H. Wu, R. Zhang and W. Pan, Chem. Mater., 2009, 21, 3479.
    [101] A. A. Ashkarran, Appl. Phys. A, 2012, 107, 401.
    [102] Y. L. Lai, M. Meng and Y. F. Yu, Appl. Catal. B, 2010, 100, 491.
    [103] O. Lupan, T. Pauporte, T. Le Bahers, B. Viana and I. Ciofini, Adv. Funct. Mater., 2011, 21, 3564.
    [104] K. W. Liu, M. Sakurai and M. Aono, J. Appl. Phys., 2010, 108, 043516.
    [105] S. S. Shinde and K. Y. Rajpure, Mater. Res. Bull., 2011, 46, 1734.
    [106] T. Ghosh and D. Basak, J. Phys. D: Appl. Phys., 2009, 42, 145304.
    [107] N. Kouklin, M. Omari, A. Gupta and S. Sen, J. Electron. Mater., 2009, 38, 596.
    [108] L. J. Mandalapu, F. Xiu, Z. Yang and J. L. Liu, Solid-State Electron., 2007, 51, 1014.
    [109] M. Yang, T. F. Xie, L. Peng, Y. Y. Zhao and D. J. Wang, Appl. Phys. A, 2007, 89, 427.
    [110] Y. Yang, W. Guo, J. J. Qi, J. Zhao and Y. Zhang, Appl. Phys. Lett., 2010, 97, 223113.
    [111] R. R. Prabhakar, N. Mathews, K. B. Jinesh, K. R. G. Karthik, S. S. Pramana, B. Varghese, C. H. Sow and S. Mhaisalkar, J. Mater. Chem., 2012, 22, 9678.
    [112] Y. Wu, E. Girgis, V. Strom, W. Voit, L. Belova and K. V. Rao, Phys. Status Solidi A, 2011, 208, 206.
    [113] J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang, Appl. Phys. Lett., 2009, 94, 191103.
    [114] S. S. Shinde and K. Y. Rajpure, Appl. Surf. Sci., 2011, 257, 9595.
    [115] R. J. Ramalingam and G. S. Chung, Mater. Lett., 2012, 68, 247.
    [116] K. Kim, Y. W. Song, S. Chang, I. H. Kim, S. Kim and S. Y. Lee, Thin Solid Films, 2009, 518, 1190.
    [117] S. Horikoshi, A. Saitou, H. Hidaka and N. Serpone, Environ. Sci. Technol., 2003, 37, 5813.
    [118] X. Q. Qiu, G. S. Li, X. F. Sun, L. P. Li and X. Z. Fu, Nanotechnology, 2008, 19, 215703.
    [119] R. L. He, R. K. Hocking and T. Tsuzuki, J. Mater. Sci., 2012, 47, 3150.
    [120] Y. Zhao, C. Z. Li, X. H. Liu, F. Go, H. L. Du and L. Y. Shi, Appl. Catal. B, 2008, 79, 208.
    [121] J. Zhao, L. Wang, X. Q. Yan, Y. Yang, Y. Lei, J. Zhou, Y. H. Huang, Y. S. Gu and Y. Zhang, Mater. Res. Bull., 2011, 46, 1207.
    [122] X. G. Han, H. Z. He, Q. Kuang, X. Zhou, X. H. Zhang, T. Xu, Z. X. Xie and L. S. Zheng, J. Phys. Chem. C, 2009, 113, 584.
    [123] A. Gurlo, Nanoscale, 2011, 3, 154.
    [124] S. Q. Tian, F. Yang, D. W. Zeng and C. S. Xie, J. Phys. Chem. C, 2012, 116, 10586.
    [125] E. S. Jang, J. H. Won, S. J. Hwang and J. H. Choy, Adv. Mater., 2006, 18, 3309.
    [126] W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae and H. J. Lee, Appl. Phys. Lett., 2004, 85, 5052.
    [127] S. Golshahi, S. M. Rozati, R. Martins and E. Fortunato, Thin Solid Films, 2009, 518, 1149.
    [128] L. J. Mandalapu, F. X. Xiu, Z. Yang and J. L. Liu, Progress in Semiconductor Materials V-Novel Materials and Electronic and Optoelectronic Applications, eds. L. J. Olafsen, R. M. Biefeld, M. C. Wanke and A. W. Saxler, 2006, 351.
    [129] C. L. Kuo, R. C. Wang, J. L. Huang, C. P. Liu, C. K. Wang, S. P. Chang, W. H. Chu, C. H. Wang and C. H. Tu, Nanotechnology, 2009, 20, 365603.
    [130] T. Karabacak, G. C. Wang and T. M. Lu, J. Appl. Phys., 2003, 94, 7723.
    [131] M. Afsal, C.-Y. Wang, L.-W. Chu, H. Ouyang and L.-J. Chen, J. Mater. Chem., 2012, 22, 8420.
    [132] Y. Lang, H. Gao, W. Jiang, L. L. Xu and H. T. Hou, Sens. Actuators, A, 2012, 174, 43.
    [133] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, Jpn. J. Appl. Phys., 1994, 33, 6611.
    [134] J. B. K. Law and J. T. L. Thong, Appl. Phys. Lett., 2006, 88, 133114.
    [135] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, Appl. Surf. Sci., 2000, 158, 134.
    [136] H.-M. Chiu, H.-J. Tsai, W.-K. Hsu and J.-M. Wu, Crystengcomm, 2013, 15, 5764.
    [137] H.-M. Chiu and J.-M. Wu, J. Mater. Chem. A, 2013, 1, 5524.
    [138] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee and J.-M. Myoung, Small, 2007, 3, 568.
    [139] A. Wadeasa, O. Nur and M. Willander, Nanotechnology, 2009, 20, 065710.
    [140] S. Zaman, A. Zainelabdin, G. Amin, O. Nur and M. Willander, J. Appl. Phys., 2012, 112, 064324.
    [141] O. Lupan, T. Pauporte and B. Viana, J. Phys. Chem. C, 2010, 114, 14781.
    [142] D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee and W. K. Choi, Nat. Nanotechnol., 2012, 7, 465.
    [143] B. Ling, X. W. Sun, J. L. Zhao, S. T. Tan, Z. L. Dong, Y. Yang, H. Y. Yu and K. C. Qi, Physica E, 2009, 41, 635.
    [144] Q. B. Zhang, H. H. Guo, Z. F. Feng, L. L. Lin, J. Z. Zhou and Z. H. Lin, Electrochim. Acta, 2010, 55, 4889.
    [145] J.-W. Kang, Y.-S. Choi, M. Choe, N.-Y. Kim, T. Lee, B.-J. Kim, C. W. Tu and S.-J. Park, Nanotechnology, 2012, 23, 495712.
    [146] X. W. Sun, B. Ling, J. L. Zhao, S. T. Tan, Y. Yang, Y. Q. Shen, Z. L. Dong and X. C. Li, Appl. Phys. Lett., 2009, 95, 133124.
    [147] M.-T. Chen, M.-P. Lu, Y.-J. Wu, J. Song, C.-Y. Lee, M.-Y. Lu, Y.-C. Chang, L.-J. Chou, Z. L. Wang and L.-J. Chen, Nano Lett., 2010, 10, 4387.
    [148] P.-J. Li, Z.-M. Liao, X.-Z. Zhang, X.-J. Zhang, H.-C. Zhu, J.-Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang and D.-P. Yu, Nano Lett., 2009, 9, 2513.
    [149] X. S. Nguyen, C. B. Tay, E. A. Fitzgerald and S. J. Chua, Small, 2012, 8, 1204.
    [150] O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski and E. Kaminska, Phys. Rev. B, 2009, 80, 245212.
    [151] Y. Li, X. Zhao and W. Fan, J. Phys. Chem. C, 2011, 115, 3552.
    [152] G. Chai, C. Lin, J. Wang, M. Zhang, J. Wei and W. Cheng, J. Phys. Chem. C, 2011, 115, 2907.
    [153] M. A. Thomas, W. W. Sun and J. B. Cui, J. Phys. Chem. C, 2012, 116, 6383.
    [154] M. P. Thi, H. Hemery, O. Durand and H. Dammak, Jpn. J. Appl. Phys., 2004, 43, 8190.
    [155] Y. Gong, R. Tu and T. Goto, Mater. Trans., 2009, 50, 2028.
    [156] L. Zhu, J. Li, Z. Ye, H. He, X. Chen and B. Zhao, Opt. Mater., 2008, 31, 237.
    [157] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao and J. L. Liu, Appl. Phys. Lett., 2005, 87, 252102.
    [158] G. Wang, S. Chu, N. Zhan, H. Zhou and J. Liu, Appl. Phys. A, 2011, 103, 951.
    [159] M. A. Thomas and J. B. Cui, J. Appl. Phys., 2009, 105, 093533.
    [160] J. Lu, Q. Liang, Y. Zhang, Z. Ye and S. Fujita, J. Phys. D: Appl. Phys., 2007, 40, 3177.
    [161] J. R. Haynes, Phys. Rev. Lett., 1960, 4, 361.
    [162] B. K. Meyer, J. Sann, S. Lautenschlager, M. R. Wagner and A. Hoffmann, Phys. Rev. B, 2007, 76, 184120.
    [163] C. O. Kim, S. Kim, D. H. Shin, D. Y. Shin, S.-H. Choi, S. W. Hwang, N.-G. Cha and S. Kang, Appl. Phys. B, 2012, 109, 283.
    [164] C. H. Ahn, W. S. Han, B. H. Kong and H. K. Cho, Nanotechnology, 2009, 20, 015601.
    [165] J. H. Werner and H. H. Guttler, J. Appl. Phys., 1991, 69, 1522.
    [166] D. P. Norton, M. Ivill, Y. Li, Y. W. Kwon, J. M. Erie, H. S. Kim, K. Ip, S. J. Pearton, Y. W. Heo, S. Kim, B. S. Kang, F. Ren, A. F. Hebard and J. Kelly, Thin Solid Films, 2006, 496, 160.
    [167] S. Mangal and P. Banerji, J. Appl. Phys., 2009, 105, 083709.
    [168] S. K. Cheung and N. W. Cheung, Appl. Phys. Lett., 1986, 49, 85.
    [169] O. F. Yuksel, N. Tugluoglu, B. Gulveren, H. Safak and M. Kus, J. Alloys Compd., 2013, 577, 30.
    [170] S. Demirezen, Z. Sonmez, U. Aydemir and S. Altindal, Curr. Appl. Phys., 2012, 12, 266.
    [171] F. Gallino, G. Pacchioni and C. Di Valentin, J. Chem. Phys., 2010, 133, 144512.
    [172] R. Kumar, N. Khare, G. L. Bhalla and M. N. Kamalasanan, Thin Solid Films, 2010, 518, E61.
    [173] R. Deng, B. Yao, Y. F. Li, T. Yang, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang and D. Z. Shen, J. Cryst. Growth, 2010, 312, 1813.
    [174] F. J. Lugo, H. S. Kim, S. J. Pearton, C. R. Abernathy, B. P. Gila, D. P. Norton, Y. L. Wang and F. Ren, Electrochem. Solid-State Lett., 2009, 12, H188.
    [175] Y.-W. Song, K. Kim, J. P. Ahn, G.-E. Jang and S. Y. Lee, Nanotechnology, 2009, 20, 275606.
    [176] X. Wang, T. Dornom, M. Blackford and R. A. Caruso, J. Mater. Chem., 2012, 22, 11701.
    [177] J. Yuan, E. S. G. Choo, X. Tang, Y. Sheng, J. Ding and J. Xue, Nanotechnology, 2010, 21, 185606.
    [178] C. Yu, K. Yang, Y. Xie, Q. Fan, J. C. Yu, Q. Shu and C. Wang, Nanoscale, 2013, 5, 2142.
    [179] J. W. Chiou, S. C. Ray, H. M. Tsai, C. W. Pao, F. Z. Chien, W. F. Pong, C. H. Tseng, J. J. Wu, M. H. Tsai, C. H. Chen, H. J. Lin, J. F. Lee and J. H. Guo, J. Phys. Chem. C, 2011, 115, 2650.
    [180] P. Pawinrat, O. Mekasuwandumrong and J. Panpranot, Catal. Commun., 2009, 10, 1380.
    [181] P. Li, Z. Wei, T. Wu, Q. Peng and Y. Li, J. Am. Chem. Soc., 2011, 133, 5660.
    [182] G. Sinha, L. E. Depero and I. Alessandri, ACS Appl. Mater. Interfaces, 2011, 3, 2557.
    [183] Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng and K. Wei, Inorg. Chem., 2007, 46, 6980.
    [184] L. Q. Jing, B. Q. Wang, B. F. Xin, S. D. Li, K. Y. Shi, W. M. Cai and H. G. Fu, J. Solid State Chem., 2004, 177, 4221.
    [185] Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen and W. Yu, Nanotechnology, 2010, 21, 285501.
    [186] F. E. Osterloh, Chem. Soc. Rev., 2013, 42, 2294.
    [187] S. C. Warren and E. Thimsen, Energy Environ. Sci., 2012, 5, 5133.
    [188] X. Zhang, Y. L. Chen, R.-S. Liu and D. P. Tsai, Rep. Prog. Phys., 2013, 76, 046401.
    [189] Y.-C. Hsueh, C.-C. Wang, C. Liu, C.-C. Kei and T.-P. Perng, Nanotechnology, 2012, 23, 405603.
    [190] J. Despres, M. Elsener, M. Koebel, O. Krocher, B. Schnyder and A. Wokaun, Appl. Catal. B, 2004, 50, 73.
    [191] S. Laursen and S. Linic, Phys. Rev. Lett., 2006, 97, 026101.
    [192] P. Blumentrit, M. Yoshitake, S. Nemsak, T. Kim and T. Nagata, Appl. Surf. Sci., 2011, 258, 780.
    [193] K. D. Schierbaum, S. Fischer, M. C. Torquemada, J. L. deSegovia, E. Roman and J. A. MartinGago, Surf. Sci., 1996, 345, 261.
    [194] S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow and N. Wu, J. Am. Chem. Soc., 2012, 134, 15033.
    [195] A. M. Salem and M. S. Selim, J. Phys. D: Appl. Phys., 2001, 34, 12.
    [196] O. Koshy and M. A. Khadar, J. Appl. Phys., 2011, 109, 124315.
    [197] S. V. Zaitsev, V. D. Kulakovskii, A. A. Maksimov, D. A. Pronin, Tartakovskii, II, N. A. Gippius, M. T. Litz, F. Fisher, A. Waag, D. R. Yakovlev, W. Ossau and G. Landwehr, Jetp Letters, 1997, 66, 376.
    [198] S. Mandal, P. R. Selvakannan, D. Roy, R. V. Chaudhari and M. Sastry, Chem. Commun., 2002, 3002.
    [199] B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin and N. Khlebtsov, Nanotechnology, 2006, 17, 5167.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE