簡易檢索 / 詳目顯示

研究生: 童圭璋
Kuei-Chang Tung
論文名稱: 含脫層複材板承受參數式激發之不穩定分析與實驗
Dynamic Instability Analysis and Experiment of Delaminated Composite Plates Under Parametric Excitation
指導教授: 葉孟考 敎授
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 117
中文關鍵詞: 複材板脫層動態不穩定
外文關鍵詞: composite plate, delamination, Dynamic instability
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料具有質量輕與強度高之優點,非常適合用於軍事、汽車、船舶、航太等工業。在複合材料需求量大增與與廣泛應用之同時,複合材料缺陷問題也顯得更加重要,而脫層是複材疊層板最常見的缺陷之一;由於製作過程中疊層不良、低速碰撞或承受負載時自由端產生過大層間剪應力都有可能使複材板產生脫層,而脫層存在會影響原本結構之動態穩定性。
    本文主要以理論分析並配合實驗研究含脫層複材疊層板受到電磁激振器激發下所引發之參數不穩定行為。文中探討脫層大小、脫層位置與複材板疊層角度、疊層數目及寬度對自然頻率與動態不穩定區之影響。實驗中之激振力是非接觸式之橫向電磁力,且此電磁激振器之激發頻率與激發振幅可由交流電源控制器控制,所以此種激振器可以避免實驗中因軸向施力可能產生的干擾問題。結果顯示隨複材板脫層寬度增加,各單頻與混頻不穩定區之激發頻率往低頻處偏移。各單頻與混頻不穩定區之激發頻率因脫層位置接近厚度中間時,不穩定區激發頻率整體而言以上升為主要之趨勢。隨複材板疊層數目增加,各單頻與混頻不穩定區之激發頻率往高頻處偏移,且各不穩定區激發頻率之間距亦增加。各單頻與混頻不穩定區之激發頻率隨複材板寬度增加或上升或下降,但整體看來以降低為主要之趨勢。隨複材板疊層角度增加,各單頻與混頻共振區之激發頻率會因模態不同而往高頻或低頻偏移;其中單頻不穩定區 之激發頻率隨疊層角度增加而下降,單頻不穩定區 之激發頻率在疊層角度為 時有最大值,單頻不穩定區 之激發頻率在疊層角度 度時有最大值。


    Composite materials have advantages of light weight, high strength and are very suitable to be used in military, automobile, ship, aerospace and other industries. As the demand for composite materials increases, the defect problems in composite materials become more important. Among them, the delamination is one type of the common defects, which induced by improper handling in the process of manufacturing, low-velocity impact, or excessive interlaminar stresses at the free edge under loading. The existence of delamination may affect the dynamic stability of the laminated composite structures.
    In this paper, the analytical and experimental methods were used to investigate the parametric instability behavior of delaminated composite plates under the transverse excitation of electromagnetic device. The influence of various parameters, such as delamination size, delamination position, ply-angle, the layer numbers and the delaminated width in composite plates, on the dynamic behavior and the dynamic instability regions were investigated. The results show that the excitation frequencies of all simple and combinational instability regions shifted to lower frequencies with increasing delaminated width in composite plates. The excitation frequencies of instability regions shifted to higher frequencies as the delamination closer to the middle of the thickness and with increasing layer numbers of the composite plates. As the width of composite plates increases, the excitation frequencies of all simple and combinational instability regions shifted mainly to lower frequencies. The excitation frequencies of all simple and combinational instability regions shifted because of the mode variations with increasing ply-angle of the composite plates. The excitation frequency of instability region of simple resonance decreases as the ply-angle of the composite plate increases. The excitation frequency of instability region of simple resonance is largest for the composite plates with 45o ply-angle. The excitation frequency of instability region of simple resonance is largest for the composite plates with 30o ply-angle.

    摘要………………………………………………………………………i 誌謝……………………………………………………………………...iv 目錄…………………………………………………………………… ...v 圖表目錄………………………………………………………………..vii 符號說明………………………………………………………………..xii 第一章 簡介 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目標 5 第二章 動態不穩定行為分析 6 2.1 複材疊層板有限單元分析 6 2.2 位移連續條件 9 2.3 模態分析 10 2.4 參數激振動態方程式 11 2.5 參數不穩定區域判別 13 第三章 實驗設備與程序 15 3.1 實驗設備 15 3.1.1 製做複材板之實驗設備 15 3.1.2 量測材料常數之實驗設備 16 3.1.3 動態不穩定量測所需之實驗設備 16 3.2 試片製作 16 3.3 材料常數量測 17 3.3.1 軸向楊式模數( )和波松比( ) 18 3.3.2 橫向楊式模數( ) 18 3.3.3 剪力模數( ) 19 3.3.4 拉伸實驗數據統計 19 3.4 超音波脫層檢測 20 3.5 複材板動態不穩定實驗 21 3.5.1 彈簧勁度與直流線圈電流之關係 21 3.5.2 含脫層複材板動態不穩定實驗 22 第四章 結果與討論 24 4.1 ANSYS模態分析 24 4.1.1 四邊固定複材板模態分析 24 4.1.2 一端固定另一端自由之複材板模態分析 25 4.2電磁彈簧線圈之位置探討 26 4.3 複材板電磁彈簧勁度與電流之關係 27 4.4 含脫層複材板疊層角度對動態不穩定區之影響 28 4.5 含脫層複材板脫層寬度對動態不穩定之影響 29 4.6含脫層複材板寬度對動態不穩定之影響 31 4.7 含脫層複材板脫層位置對動態不穩定之影響 33 4.8 含脫層複材板疊層數目對動態不穩定之影響 36 第五章 結論 38 參考文獻 39 圖表 43

    1. Z. P. Bazant, “Structural Stability,” International Journal of Solids and Structures, Vol. 37, pp. 55-67, 2000.
    2. V. V. Bolotin, The Dynamic Stability of Elastic Systems, New York, Holden-Day Inc., 1965.
    3. M. K. Yeh and C. C. Chen, “Dynamic Instability of a General Column Under Periodic Load in the Direction of Tangency Coefficient at any Axial Position,” Journal of Sound and Vibration, Vol. 217, pp. 665-689, 1998.
    4. C. C. Chen and M. K. Yeh, “Parametric Instability of a Column with Axially Oscillating Mass,” Journal of Sound and Vibration, Vol. 224, pp. 643-664, 1999.
    5. 郭耀庭, “複材樑承受參數式激發之動態不穩定實驗與分析,” 清華大學碩士論文, 2000.
    6. P. J. Deolasi and P. K. Datta, “Parametric Instability Characteristics of Rectangular Plates Subjected to Localized Edge Loading(Compression or Tension),” Computers & Structures, Vol. 54, No. 1, pp. 73-82, 1995.
    7. P. J. Deolasi and P. K. Datta, “Simple and Combination Resonances of Rectangular Plates Subjected to Non-Uniform Edge Loading with Damping,” Engineering Structures, Vol. 19. pp. 1011-1017, 1997.
    8. D. L. Prabhakara and P. K. Datta, “Static and Dynamic Elastic Behavior of Damaged Plates Subjected to Local Inplane Loads,” Marine Structures, Vol. 9, pp.811-818, 1996.
    9. R. S. Srinivasan and P. Chellapandi, “Dynamic Stability of Rectangular Laminated Composite Plates,” Computers and Structures, Vol. 24, pp. 233-238, 1986.
    10. L. W. Chen and J, Y, Yang, “Dynamic Stability of Laminated Composite Plates by the Finite Element Method,” Computers and Structures, Vol. 36, pp. 845-851, 1990.
    11. J. H. Kim and H. S. Kim, “A Study on the Dynamic Stability of Plates Under a Follower Force,” Computers and Structures, Vol. 74, pp. 351-363, 2000.
    12. B. P. Patel, M. Ganapathi, K. R. Prasad and V. Balamurugan, “Dynamic Instability of Layered Anisotropic Composite Plates on Elastic Foundations,” Engineering Structures, Vol. 21, pp. 988-995, 1999.
    13. A. Chattopadhyay and A. G. Radu, “Dynamic Instability of Composite Laminates Using a Higher Order Theory,” Computers and Structures, Vol. 77, pp. 453-460, 2000.
    14. V. Balamurugan, M. Ganapathi and T. K. Varadan, “ Nonlinear Dynamic Instability of Laminated Composite Plates Using Finite Element Method,” Computers and Structures, Vol. 60, pp. 125-130, 1996.
    15. 劉家憲, “複材板承受參數式激發之動態不穩定實驗與分析,” 清華大學碩士論文, 2002.
    16. M. Ganapathi, B. P. Patel, P. Boisse and M. Touratier, “Non-Linear Dynamic Stability Characteristics of Elastic Plates Subjected to Periodic In-Plane Load,” International Journal of Non-Linear Mechanics, Vol. 35, pp. 467-480, 2000.
    17. N. L. Sheela, G. Singh and G. V. Rao, ”Stability of Laminated Composite Plates Subjected to Various Types of In-Plane Loading,” International Journal Mechanical Science, Vol. 38, pp. 191-202, 1996.
    18. M. E. Fares and A. M. Zenkour, “Buckling and Free Vibration of Non-Homogeneous Composite Cross-Ply Laminated Plates with Various Plate Theories,” Composite Structures, Vol. 44, pp. 279-287, 1999.
    19. M. Ganapathi, B. P. Patel, C. T. Sambandam and M. Touratier, “Dynamic Instability Analysis of Circular Conical Shells,” Composite Structures, Vol. 46, pp. 59-64, 1999.
    20. L. Y. Li, “Approximate Estimates of Dynamic Instability of Long Circular Cylindrical Shells under Pure Bending,” Int. J. Pres. Ves. and Piping, Vol. 67, pp. 37-40, 1996.
    21. T. Y. Ng, K. Y. Lam and J. N. Reddy, “Dynamic Stability of Cross-Ply Laminated Composite Cylindrical Shells,” International Journal of Mechanical Sciences, Vol. 40, pp. 805-823, 1998.
    22. 黃鴻昌, “複材殼承受參數式激發之動態不穩定實驗與分析,” 清華大學碩士論文, 2003.
    23. F. Ju, H. P. Lee and K. H. Lee, "Free Vibration Analysis of composite Beams with Multiple Delaminations," Composites Engineering, Vol. 4, PP. 715-730, 1994.
    24. R. M. Gadelrad, "The Effect of Delamination on the Natural Frequencys of a Laminated Composite Beam," Journal of Sound and Vibration, Vol. 197, pp 283-292, 1996.
    25. S. N. Luo, Y. M. Fu and Z. Y. Cao, " Non-Linear Vibration of Composite Beams with an Arbitrary Delamination," Journal of Sound and Vibration, Vol. 271, pp. 535-545, 2004.
    26. M. Kisa, "Free Vibration Analysis of a Cantilever Composite Beam with Multiple Cracks," Composites Science and Technology, Vol. 64, pp. 1391-1402, 2004.
    27. D. Shu and C. N. Della, "Free vibration analysis of composite beams with two non-overlapping delaminations," International Journal of Mechanical Sciences, Vol. 46, pp. 509-526, 2004.
    28. 賴仁正, “含脫層複材疊層板的自由振動分析與實驗,” 清華大學碩士論文, 1996.
    29. 翁文斌, “含脫層複材疊層板之動態反應分析與實驗,” 清華大學碩士論文, 1997.
    30. N. Hu, H. Fukunaga, M. Kameyama, Y. Aramaki and F. K. Chang, "Vibration Analysis of Delaminated Composite Beams and Plates Using a Higher-Order Finite Element," International Journal of Mechanical Sciences, Vol. 44, pp. 1479-1503, 2002.
    31. F. Ju, H. P. Lee and K. H. Lee, " Finite Element Analysis of Free Vibration of Delaminated Composites Plates," Composites Engineering, Vol. 5, pp. 195-209, 1995.
    32. F. Ju, H. P. Lee, and K. H. Lee, "Free Vibration of Composite Plates with Delaminationa around Cutouts," Composite Structures, Vol. 31, pp. 177-183, 1995.
    33. A .G.. Radu and A. Chattopadhyay, "Dynamic Stability Analysis of Composite Plates Including Delaminations Using Higher Order Theory and Transformation Matrix Approach," International Journal of Solids and Structures, Vol. 39, pp. 1949-1965, 2002.
    34. R. W. Campanelli and J. J. Engblom, "The Effect of Delaminations in Graphite/PEEK Composite Plates on Modal Dynamic Characteristics," Composite Structures, Vol. 31, pp. 195-202, 1995.
    35. H. P. Hou and G. Jeronimidis, "Vibration of Delaminated Thin Composite Plates," Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), Vol. 30, pp. 989-995, 1999.
    36. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    37. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    38. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
    39. S. S. Rao, Mechanical Vibrations, Addison-Wesley, Reading, Mass., 1990.
    40. R. R. Craig, Structural Dynamics, Wiley, New York, 1981.
    41. K. S. Kim and C. S. Hong, “Delamination Growth in Angle-Ply Laminated Composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
    42. M. K. Yeh and C. M. Tan, “Buckling of Elliptically Delaminated Composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
    43. ASTM D3039-76, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 162-165, 1983.
    44. ASTM D3518-76, “Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, Section 3, Vol. 15.03, pp. 202-207, 1983.
    45. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
    46. J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” New York, McGraw-Hill Inc., 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE