簡易檢索 / 詳目顯示

研究生: 陳曉旻
Hsiao-Min Chen
論文名稱: Improved Reception for Orthogonal Frequency-Division Multiplexing Systems with Phase Noise
具相位雜訊正交分頻多工系統之改良接受技術研究
指導教授: 趙啟超
Chi-Chao Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 67
中文關鍵詞: 正交分頻多工系統相位雜訊
外文關鍵詞: Orthogonal Frequency-Division Multiplexing, Phase Noise
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來為了因應高速傳輸的需求,多載波系統的應用已經大量增加。正交分頻多工(Orthogonal Frequency-Division Multiplexing)是一種調變技術,因為具有以下幾個優點,例如:高頻譜效益,對於訊符間干擾和多路徑干擾有很強的對抗性等,所以已經被廣泛運用於無線傳輸系統上。然而,正交分頻多工技術卻對一些隨著時間而改變的效應非常地敏感。特別是,來自於不可避免的振盪器抖動造成的相位雜訊(Phase Noise),是一種隨機的擾動且會造成兩個效應:共同相位誤差(Common Phase Error)和載波間干擾(Inter-carrier Interference)。
    已經有很多學術上的文獻提出了解決這個問題的方法;但是,這些方法的假設在某些情況之下可能有不合理的地方,例如:必須完全知道通道的訊息和(或)傳送訊號的訊息,或是系統必須有前置序列。在傳輸通道是會變化的環境之下,倘若沒有追蹤通道變化量,效能還是會衰減。
    因此,這篇論文的目的在於提出一個可以只用前導訊號就能同時做到補償共同相位誤差和估計出未知通道響應的演算法。達到這個目標的關鍵步驟在於,考慮一段合理時間內的通道穩定性和利用多個正交分頻多工訊符一起作估計。此外,在逆映射階段考慮具有頻率選擇特性的載波間干擾加上通道雜訊能量變化,在加碼系統上的效能會帶來增益。有關於在演算法實現上的一些實際考量也在內文裡有所討論。最後,我們也提供了模擬的結果來驗證提出的演算法的效能。


    Applications of multi-carrier systems have increased extensively in recent years to cope with the need of high-data-rate transmissions. Orthogonal frequency-division multiplexing (OFDM) is a modulation technique wildly employed in wireless communication systems due to its advantages such as high spectra efficiency, robustness against inter-symbol interference (ISI) and multipath interference, etc. However, OFDM is extremely sensitive
    to time-varying effects. In particular, phase noise, coming from unavoidable oscillator jitters, is a random perturbation that would result in two unwanted effects: common phase error (CPE) and inter-carrier interference (ICI). There were quite a number of research works in the literature that have been proposed to deal with the problem; yet, the assumptions of those methods, such as
    the requirement of full knowledge on the channel and/or the
    transmitted signals or the need of preambles, may be impractical for certain situations. Therefore, the purpose of this thesis is to propose an algorithm that can compensate the CPE caused by phase noise and estimate the unknown channel response jointly by using pilots only. The key step toward this feature is to exploit the channel stationarity within a reasonable time duration and to
    perform joint estimation over several OFDM symbols. Improvements on the coded performance can be realized by incorporating the frequency-selective ICI-plus-noise energy profile in de-mapping. Several practical considerations of algorithm implementation are also addressed. Finally, simulation results are provided to demonstrate the performance of the proposed algorithm.

    Contents Abstract i Contents ii 1 Introduction 1 2 Overview of OFDM Systems 4 2.1 Advantages of OFDM Technology . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 OFDM System Model without Phase Noise . . . . . . . . . . . . . . . . . . . 5 3 E®ects of Phase Noise 9 3.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Wiener-Type Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Gaussian-Type Phase Noise . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 System Model with Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Previous Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Proposed Joint Estimation Method 18 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ii 4.2 Joint Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Improved Coded Preformance . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Practical Considerations 34 5.1 E±cient Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Application to Time-Varying Channels . . . . . . . . . . . . . . . . . . . . . 38 5.3 Employment of Di®erent Pilot Patterns . . . . . . . . . . . . . . . . . . . . . 39 6 Simulations Results 40 6.1 Generation of AWGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.1 Uncoded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.2 Coded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Models of Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2.1 IEEE 802.11 Channel Model . . . . . . . . . . . . . . . . . . . . . . . 43 6.2.2 TU6 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3 DVB System Con‾gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.4 Simulation Results under Time-Invariant Channels . . . . . . . . . . . . . . 45 6.4.1 Uncoded Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4.2 Coded Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.5 Simulation Results under Time-Varying Channels . . . . . . . . . . . . . . . 51 6.5.1 Uncoded Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.5.2 Coded Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 iii 7 Conclusions 63 iv

    Bibliography
    [1] T. Pollet, M. V. Bladel, and M. Moeneclaey, \Ber sensitivity of OFDM systems to
    carrier frequency o®set and wiener phase noise," IEEE Trans. Commun., vol. 43, pp.
    191{193, Apr. 1995.
    [2] A. G. Armada, \Understanding the e®ects of phase noise in orthogonal frequency divi-
    sion multiplexing (OFDM)," IEEE Trans. Broadcast., vol. 47, pp. 153{159, 2001.
    [3] L. Piazzo and P. Mandarini, \Analysis of phase noise e®ects in OFDM modems," IEEE
    Trans. Commun., vol. 50, pp. 1696{1705, Oct. 2002.
    [4] S. Wu and Y. Bar-Ness, \OFDM systems in the presence of phase noise: Consequences
    and solutions," IEEE Trans. Commun., vol. 52, pp. 1988{2004, Nov. 2004.
    [5] D. Petrovic, W. Rave, and G. Fettweis, \Properties of the intercarrier interference due to
    phase noise in OFDM," in Proc. IEEE International Conf. on Communications, Seoul,
    Korea, May 2005, pp. 2605{2610.
    [6] ||, \Phase noise suppression in OFDM using a kalman ‾lter," in Proc. WPMC,
    Yokosuka, Japan, Oct. 2003.
    [7] A. R. Varma, C. R. N. Athaudage, L. L. Andrew, and J. H. Manton, \Phase noise
    compensation for OFDM WLAN systems using superimposed pilots," in Proc. IEEE
    International Conf. on Computational Sciences, Singapore, Oct. 2006, pp. 1{5.
    65
    [8] S. Wu and Y. Bar-Ness, \Phase noise estimation and mitigation for OFDM systems,"
    IEEE Trans. Wireless Commun., vol. 5, pp. 3616{3625, Dec. 2006.
    [9] D. D. Lin, R. A. Pacheco, T. J. Lim, and D. Hatzinakos, \Joint estimation of channel
    response, frequency o®set, and phase noise in OFDM," IEEE Trans. Signal Processing,
    vol. 54, pp. 3542{3554, 2006.
    [10] ||, \Optimal OFDM channel estimation with carrier frequency o®set and phase
    noise," in Proc. IEEE Wireless Communications and Networking Conf., Las Vegas,
    NV, 2006, pp. 1050{1055.
    [11] Y. H. Kim, J. H. Lee, and S. C. Kim, \Joint common phase error and channel estimation
    for OFDM-based WLANs in the presence of wiener phase noise and residual frequency
    o®set," in Proc. IEEE International Conf. on Communications, Istanbul, Turkey, 2006,
    pp. 3040{3045.
    [12] D. D. Lin and T. J. Lim, \The variational inference approach to joint data detection
    and phase noise estimation in OFDM," IEEE Trans. Signal Processing, vol. 55, pp.
    1862{1874, May 2007.
    [13] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:
    Artech House, 2000.
    [14] A. Hajimiri, S. Limotyrakis, and T. H. Lee, \Jitter and phase noise in ring oscillators,"
    IEEE J. Solid-State Circuits, vol. 34, pp. 790{804, 1999.
    [15] A. Demir, A. Mehrotra, and J. Roychowdhury, \Phase noise in oscillators: A unifying
    theory and numerical methods for characterization," IEEE Trans. Circuits Syst., vol. 47,
    pp. 655{674, May 2000.
    66
    [16] N. Nikitopoulos and P. Polydoros, \Compensation schemes for phase noise and residual
    frequency o®set in OFDM system," in Proc. GLOBECOM' 01, San Antonio, TX, Nov.
    2001, pp. 331{333.
    [17] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes.
    1221 Avenue of the Americas, New York, NY: McGraw-Hill, 2002.
    [18] Digital Video Broadcasting (DVB): Framing structure,channel coding, and modulation
    for digital terrestrial television, ETSI EN 300 744 V1.5.1 , Nov., 2004.
    [19] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc., 1996.
    [20] F. Tosato and P. Bisaglia, \Simpli‾ed soft-output demapper for binary interleaved
    COFDM with application to HIPERLAN/2," in Proc. IEEE International Conf. on
    Communications, New York, NY, 2002, pp. 664{668.
    [21] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore, MD: Johns Hopkins
    University Press, 1996.
    [22] B. O'Hara and A. Petrick, The IEEE 802.11 Handbook: A Dwsigner's Comparison.
    New York, NY: IEEE Press, 1999.
    [23] C. 207, Digital land mobile radio communications, o±ce for O±cial Publications of the
    European Communities, Final Report, Luxembourg, 1989.
    [24] M. Patzold, Mobile Fading Channels. New York: Wiley, 2002.
    [25] G. L. Stuber, Principles of Mobile Communication. Massachusetts: Kluwer Academic,
    2001.
    67

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE