研究生: |
張東羣 Chang, Tung-Chun |
---|---|
論文名稱: |
於IEEE 802.11ah 網路中基於流量感知的感測器分組: 分析與設計 Traffic-Aware Sensor Grouping for IEEE 802.11ah Networks: Analysis and Design |
指導教授: |
陳文村
Chen, Wen-Tsuen |
口試委員: |
林靖茹
許健平 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 物聯網 、基於分群的MAC機制 、802.11ah |
外文關鍵詞: | Internet of things, Grouping-based MAC protocol, 802.11ah |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的IEEE 802.11 網路是設計給小規模本地無線網路使用的,然而隨著物聯網的出現 (IoT),無線網路的使用情境也隨之改變,因此最近IEEE TGah 正在制定一個專門給物聯網使用的新傳輸協定名叫IEEE 802.11ah,IEEE 802.11ah 採取一個分群的MAC傳輸協定來降低感測器之間競爭的負擔,但是大多數現有的方法都是隨機把感測器分群,很少著重在如何有效的分群,所以此篇論文我們主張分群後網路的效能和感測器的異質網路需求有很大的關係,進一步的我們提出一個考慮網路競爭機率的流量模型,再來提出一個流量感知的感測器分組來改善網路的使用度,最後經由模擬顯示我們的方法比其他方法可以得到更好的網路使用度特別是在網路接近飽和的時候。
Traditional IEEE 802.11 network is designed for the use of small scale local wireless networks. However, the emergence of the Internet of Things (IoT) has changed the scene of wireless communications. Thus, recently, the IEEE task group ah (TGah) is dedicated to the standardization of a new protocol, called IEEE 802.11ah, which is customized for this type of large-scale networks. IEEE 802.11ah adopts the grouping-based MAC protocol to reduce the contention overhead for each group of devices. However, most existing designs simply randomly distribute devices to groups, and less attention has been paid to the problem of forming efficient groups. Therefore, in this paper, we argue that the performance of grouping is closely related to heterogeneity in traffic demands of devices, and further build a traffic model with consideration of transmission probability. Then a traffic-aware grouping algorithm is proposed to
improve channel utilization of each group. The evaluation shows that our traffic-aware grouping outperforms the other methods, especially when the network is almost saturated.
[1] M. A. Uusitalo, “Global Vision for the Future Wireless World from the WWRF,” Vehicular Technology Magazine, IEEE, vol. 1, no. 2, pp. 4–8, 2006.
[2] “IEEE Draft Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment- Sub 1 GHz License-Exempt Operation,” IEEE P802.11ah/D2.0, June 2014, pp. 1–582, July 2014.
[3] M. Cheong, “TGah Functional Requirements and Evaluation Methodology,”IEEE 802.11-11/0905r5, January 2012.
[4] Y. Yang and S. Roy, “Grouping-Based MAC Protocols for EV Charging Data Transmission in Smart Metering Network,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 1328–1343, July 2014.
[5] L. Zheng, M. Ni, L. Cai, J. Pan, C. Ghosh, and K. Doppler, “Performance Analysis of Group-Synchronized DCF for Dense IEEE 802.11 Networks,”IEEE Transactions on Wireless Communications, vol. 13, pp. 6180–6192, Nov 2014.
[6] T.-C. Chang, C.-H. Lin, K. C.-J. Lin, and W.-T. Chen, “Load-Balanced Sensor Grouping for IEEE 802.11ah Networks,” in IEEE GLOBECOM, 2015.
[7] M. Park, “IEEE 802.11ah: Energy Effcient MAC Protocols for Long Range Wireless LAN,” in IEEE ICC, 2014.
[8] Y. Wang, Y. Li, K. K. Chai, Y. Chen, and J. Schormans, “Energy-Aware Adaptive Restricted Access Window for IEEE 802.11ah Based Networks,”in IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1211–1215, 2015.
[9] O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen, and M. Valkama, “Performance Evaluation of IEEE 802.11ah and its Restricted Access Window Mechanism,” in IEEE ICC Workshops, 2014.
[10] L. Zheng, L. Cai, J. Pan, and M. Ni, “Performance Analysis of Grouping Strategy for Dense IEEE 802.11 Networks,” in IEEE GLOBECOM, 2013.
[11] R. Liu, G. Sutton, and I. Collings, “WLAN Power Save with Offset Listen Interval for Machine-to-Machine Communications,” IEEE Transactions on Wireless Communications, vol. 13, pp. 2552–2562, May 2014.
[12] M. Qutab-ud din, A. Hazmi, B. Badihi, A. Larmo, J. Torsner, and M. Valkama, “Performance Analysis of IoT-Enabling IEEE 802.11ah Technology and its RAW Mechanism with Non-Cross Slot Boundary Holding Schemes,” in IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015, pp. 1–6, June 2015.
[13] A. Bel, T. Adame, B. Bellalta, J. Barcelo, J. Gonzalez, and M. Oliver, “CAS-based Channel Access Protocol for IEEE 802.11ah WLANs,” in Proceedings of European Wireless, 2014.
[14] L. Zhong, Y. Shoji, K. Nakauchi, and S. Eum, “BE-DCF: Barring-Enhanced Distributed Coordination Function for Machine Type Communications in IEEE 802.11 Networks,” in IEEE ICC Workshops, 2014.
[15] D. Bankov, E. Khorov, and A. Lyakhov, “The Study of the Centralized Control Method to Hasten Link Set-Up in IEEE 802.11ah Networks,” in Proceedings of European Wireless, pp. 1–6, 2015.
[16] B. Ji, S. Chen, K. Song, C. Li, H. Chen, and Z. Li, “Throughput Enhancement Schemes for IEEE 802.11 ah Based on Multi-Layer cooperation,” in International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1112–1116, 2015.
[17] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communications, vol. 18, pp. 535–547, March 2000.
[18] Y. Tay and K. C. Chua, “A Capacity Analysis for the IEEE 802.11 MAC Protocol,” Wireless networks, vol. 7, no. 2, pp. 159–171, 2001.
[19] R. Zhang, R. Ruby, J. Pan, L. Cai, and X. Shen, “A Hybrid Reservation/Contention-Based MAC for Video Streaming over Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 3, pp. 389–398, 2010.
[20] R.Banerjea, “http://mentor.ieee.org/802.11/dcn/12/ 1458 11-12-0613-00-00ah-us-channelization.pptx,” US Channelization, 2012.