簡易檢索 / 詳目顯示

研究生: 張慈芳
論文名稱: 利用改變點的方法來監控簡單線性Berkson輪廓
指導教授: 黃榮臣
口試委員: 王秀瑛
吳建瑋
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 線性輪廓輪廓監控Berkson輪廓改變點方法管制圖
外文關鍵詞: linear profile, profile monitoring, Berkson profile, change point method, control chart
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多情況下製程或產品的品質特徵是由一個反應變數與一個或多個解釋變數的某種特定關係(函數)所表現,通常我們將此種資料型態稱為輪廓資料。當輪廓資料滿足簡單線性迴歸的模型,且此模型中的解釋變數設定值與實際值的差距大到無法忽略時,我們使用簡單線性Berkson模型來描述此類的輪廓資料。在本論文中,當輪廓資料滿足簡單線性Berkson模型時,我們以Mahmoud、Parker、Woodall和Hawk-ins (2007) 所提出的改變點監控方法為基礎,經由王藝華 (2010) 所建議的製程改變點的估計方法,對簡單線性Berkson輪廓資料做第一階段的監控,並與KMW與Global F兩種監控方法做比較。此外,當改變點的監控方法偵測到製程失控警訊後,我們採用最大化一般概似比的方法來找出製程改變點的估計值。由模擬的結果得知,當輪廓資料滿足簡單線性Berkson模型時,利用本文建議的監控方法與改變點的估計值,無論在製程的監控或是製程改變點的估計上都有不錯的表現。最後我們利用一個例子來說明實際上如何使用所提出的監控方法。


    第一章 緒論 1.1 前言 1.2 輪廓監控 1.3 動機 第二章 模型假設 2.1 簡單線性Berkson 模型 2.2 參數估計 2.3 改變點 (change point) 的監控方法 2.4 管制界限的選取 2.5 其他監控方法 2.5.1 KMW方法 2.5.2 Global F 方法 第三章 監控方法偵測能力的比較 3.1 失控警訊機率 3.2 階梯式偏移 3.2.1 單一參數改變 3.2.2 多個參數同時改變 3.3 異值點 3.4 製程改變點的偵測 3.5 例子 四 結論與未來研究 參考文獻 附圖 附表

    [1] Colosimo, B. M., and Pacella, M. (2007). “On the Use
    of Principal Component A- nalysis to Identify
    Systematic Patterns in Roundness Profiles”. Quality
    and Reliability Engineering International 23, pp.
    707-725.

    [2] Ding, Y., Zeng, L., and Zhou, S. (2006). “Phase Ⅰ
    Analysis for Monitoring Nonli- near Profiles in
    Manufacturing Processes”. Journal of Quality
    Technology 38, pp. 199-216.

    [3] Jin, J., and Shi, J. (1999). “Feature-Preserving Data
    Compression of Stamping To- nnage Information Using
    Wavelet”. Technometrics 41, pp. 327-339.

    [4] Kang, L., and Albin, S. L. (2000). “On-Line Monitoring
    When the Process Yields a Linear Profile”. Journal of
    Quality Technology 32, pp. 418-426.

    [5] Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003).
    “On the Monitoring of Li- near Profiles”. Journal of
    Quality Technology 35, pp 317-328.

    [6] Lada, E. K., Lu, J.-C., and Wilson, J. R. (2002). “A
    Wavelet-Based Procedure for Process Fault Detection”.
    IEEE Transactions on Semiconductor Manufacturing 15,
    pp. 79-90.

    [7] Mahmoud, M. A., Parker, P. A., Woodall, W. H., and
    Hawkins, D. M. (2007). “A Change Point Method for
    Linear Profile Data”. Quality and Reliability
    Engineering International 23, pp. 247-268.

    [8] Mahmoud, M. A., and Woodall, W. H. (2004). “Phase Ⅰ
    Monitoring of Linear Profiles with Calibration
    Application”. Technometrics 46, pp. 380-391.

    [9] Mestek, O., Pavlik, J., and Suchanek, M. (1994).
    “Multivariate Control Charts: Control Charts for
    Calibration Curves”. Journal of Analytical Chemistry
    350, pp. 344-351.

    [10] Montgomery, D. C. (2009). Introduction to Statistical
    Quality Control, 6th ed. Jo- hn Wiley & Sons, Inc. New
    York, NY.

    [11] Page, E. S. (1954). Continuous Inspection Schemes.
    Biometrics 41, pp. 100-114.

    [12] Roberts, S. W. (1959). Control Chart Tests Based on
    Geometric Moving Average Technometrics 1, pp. 239-250.

    [13] Stover, F. S., and Brill, R. V. (1998). “Statistical
    Quality Control Applied to Ionchromatography
    Calibrations”. Journal of Chromatography A 804, pp.
    37-43.

    [14] Walker E., and Wright, S. (2002). “Comparing Curves
    Using Additive Models”. Journal of Quality Technology
    34, pp. 118-129.

    [15] Williams, J. D., Woodall, W. H., and Birch, J. B.
    (2007). “Statistical Monitoring of Nonlinear Product
    and Process Quality Profiles”. Quality and
    Reliability Eng- gineering International 23, pp.
    925-941.

    [16] Williams, J. D., Birch, J. B., Woodall, W. H., and
    Ferry, N. M. (2007). “Statistical Monitoring of
    Heteroscedastic Dose-Response Profiles From
    High-Throughput Screening”. Journal of Agricultural,
    Biological, and Environmental Statistics 12, pp.
    216-235.

    [17] Woodall, W. H., Spitzner, D. J., Montgomery, D. C.,
    and Gupta, S. (2004). “Using Control Charts to
    Monitor Process and Process and Product Quality
    Profiles”. Journal of Quality Technology 36, pp.
    309-320.

    [18] Zou, C., Tsung, F., and Wang, Z. (2007). “Monitoring
    General Linear Profiles Using Multivariate
    Exponentially Weighted Moving Average Schemes”.
    Technometrics 49, pp. 395-408.

    [19] Zou, C., Tsung, F., and Wang, Z. (2008). “Monitoring
    Profiles Based on Nonpar- ametric Regression
    Methods”. Technometrics 50, pp. 512-526.

    [20] 王藝華 (2010). “On the Monitoring of Linear Berkson
    Profiles”. 國立清華大學博士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE