研究生: |
張慈芳 |
---|---|
論文名稱: |
利用改變點的方法來監控簡單線性Berkson輪廓 |
指導教授: | 黃榮臣 |
口試委員: |
王秀瑛
吳建瑋 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 線性輪廓 、輪廓監控 、Berkson輪廓 、改變點方法 、管制圖 |
外文關鍵詞: | linear profile, profile monitoring, Berkson profile, change point method, control chart |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多情況下製程或產品的品質特徵是由一個反應變數與一個或多個解釋變數的某種特定關係(函數)所表現,通常我們將此種資料型態稱為輪廓資料。當輪廓資料滿足簡單線性迴歸的模型,且此模型中的解釋變數設定值與實際值的差距大到無法忽略時,我們使用簡單線性Berkson模型來描述此類的輪廓資料。在本論文中,當輪廓資料滿足簡單線性Berkson模型時,我們以Mahmoud、Parker、Woodall和Hawk-ins (2007) 所提出的改變點監控方法為基礎,經由王藝華 (2010) 所建議的製程改變點的估計方法,對簡單線性Berkson輪廓資料做第一階段的監控,並與KMW與Global F兩種監控方法做比較。此外,當改變點的監控方法偵測到製程失控警訊後,我們採用最大化一般概似比的方法來找出製程改變點的估計值。由模擬的結果得知,當輪廓資料滿足簡單線性Berkson模型時,利用本文建議的監控方法與改變點的估計值,無論在製程的監控或是製程改變點的估計上都有不錯的表現。最後我們利用一個例子來說明實際上如何使用所提出的監控方法。
[1] Colosimo, B. M., and Pacella, M. (2007). “On the Use
of Principal Component A- nalysis to Identify
Systematic Patterns in Roundness Profiles”. Quality
and Reliability Engineering International 23, pp.
707-725.
[2] Ding, Y., Zeng, L., and Zhou, S. (2006). “Phase Ⅰ
Analysis for Monitoring Nonli- near Profiles in
Manufacturing Processes”. Journal of Quality
Technology 38, pp. 199-216.
[3] Jin, J., and Shi, J. (1999). “Feature-Preserving Data
Compression of Stamping To- nnage Information Using
Wavelet”. Technometrics 41, pp. 327-339.
[4] Kang, L., and Albin, S. L. (2000). “On-Line Monitoring
When the Process Yields a Linear Profile”. Journal of
Quality Technology 32, pp. 418-426.
[5] Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003).
“On the Monitoring of Li- near Profiles”. Journal of
Quality Technology 35, pp 317-328.
[6] Lada, E. K., Lu, J.-C., and Wilson, J. R. (2002). “A
Wavelet-Based Procedure for Process Fault Detection”.
IEEE Transactions on Semiconductor Manufacturing 15,
pp. 79-90.
[7] Mahmoud, M. A., Parker, P. A., Woodall, W. H., and
Hawkins, D. M. (2007). “A Change Point Method for
Linear Profile Data”. Quality and Reliability
Engineering International 23, pp. 247-268.
[8] Mahmoud, M. A., and Woodall, W. H. (2004). “Phase Ⅰ
Monitoring of Linear Profiles with Calibration
Application”. Technometrics 46, pp. 380-391.
[9] Mestek, O., Pavlik, J., and Suchanek, M. (1994).
“Multivariate Control Charts: Control Charts for
Calibration Curves”. Journal of Analytical Chemistry
350, pp. 344-351.
[10] Montgomery, D. C. (2009). Introduction to Statistical
Quality Control, 6th ed. Jo- hn Wiley & Sons, Inc. New
York, NY.
[11] Page, E. S. (1954). Continuous Inspection Schemes.
Biometrics 41, pp. 100-114.
[12] Roberts, S. W. (1959). Control Chart Tests Based on
Geometric Moving Average Technometrics 1, pp. 239-250.
[13] Stover, F. S., and Brill, R. V. (1998). “Statistical
Quality Control Applied to Ionchromatography
Calibrations”. Journal of Chromatography A 804, pp.
37-43.
[14] Walker E., and Wright, S. (2002). “Comparing Curves
Using Additive Models”. Journal of Quality Technology
34, pp. 118-129.
[15] Williams, J. D., Woodall, W. H., and Birch, J. B.
(2007). “Statistical Monitoring of Nonlinear Product
and Process Quality Profiles”. Quality and
Reliability Eng- gineering International 23, pp.
925-941.
[16] Williams, J. D., Birch, J. B., Woodall, W. H., and
Ferry, N. M. (2007). “Statistical Monitoring of
Heteroscedastic Dose-Response Profiles From
High-Throughput Screening”. Journal of Agricultural,
Biological, and Environmental Statistics 12, pp.
216-235.
[17] Woodall, W. H., Spitzner, D. J., Montgomery, D. C.,
and Gupta, S. (2004). “Using Control Charts to
Monitor Process and Process and Product Quality
Profiles”. Journal of Quality Technology 36, pp.
309-320.
[18] Zou, C., Tsung, F., and Wang, Z. (2007). “Monitoring
General Linear Profiles Using Multivariate
Exponentially Weighted Moving Average Schemes”.
Technometrics 49, pp. 395-408.
[19] Zou, C., Tsung, F., and Wang, Z. (2008). “Monitoring
Profiles Based on Nonpar- ametric Regression
Methods”. Technometrics 50, pp. 512-526.
[20] 王藝華 (2010). “On the Monitoring of Linear Berkson
Profiles”. 國立清華大學博士論文.