簡易檢索 / 詳目顯示

研究生: 賈皓中
Chia, Hao-Chung
論文名稱: 有機-鹵素化鉛鈣鈦礦太陽能電池薄膜之結晶行為解析與調控
Resolving and Modulating the Crystallization Behavior of the Organolead Perovskite Thin Film Solar Cells
指導教授: 鄭有舜
Jeng, U-Ser
口試委員: 許火順
Sheu, Hwo-Shuenn
蘇安仲
Su, An-Chung
李紹先
Li, Shao-Sian
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 有機-無機鈣鈦礦結構演進中間相X光散射
外文關鍵詞: Organic-inorganic perovskite, structural evolution, intermediate phase, grazing incidence X-ray scattering
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用時間解析掠角X光散射 (In-situ GIXS)輔以光電子能譜 (XPS)及X光繞射 (XRD)研究以PbCl2+MAI為前驅物所形成的CH3NH3PbI3-xClx鈣鈦礦薄膜在高溫退火過程中的結晶行為。前驅物在退火過程初期先形成中間相(CH3NH3)2Pb(Cl2I2)·CH3NH3I此結構中之八面體堆疊的層狀結構與2-D鈣鈦礦結構一致,而能在加熱過程後期中透過氯離子的脫附而誘導與夾層的碘離子組合成3-D鈣鈦礦晶體(MAPbI3)結構。鈣鈦礦晶體成長的過程中可再細分成兩個階段,第一階段的來源為非晶前驅物,但此階段生成的鈣鈦礦薄結晶數量少;而第二階段來源則為前述—由中間相轉化結晶,其所產生的結晶繼承中間相的方向性及結晶大小。而受不同退火溫度下不同結晶動力之影響,兩種階段的比例也會改變:較高溫退火 (120 °C)時,第一階段產生的隨機取向晶粒比例會增加;而在較低溫 (105) °C則幾乎未有第一階段方向無序晶體出現,最後薄膜晶體特性則由第二階段所產生偏好(100)面朝上的立方晶體主導。這兩個階段結晶動力學參數皆經由Avrami分析取得鈣鈦礦晶體結晶的Avarami反應級數 (n)及反應常數 (k)。第一階段成長n值約為1,而第二階段約為3.5。而透過隨溫度變化取得的反應常數,所獲取相對應的結晶生成活化能在第一階段較高為180 kJ/mol,而第二階段活化能為66 kJ/mol與中間相的生成活化能124 kJ/mol相近,支持由中間相熔融轉化的結晶機制。而本文第二部分則在鈣鈦礦前驅物中加入表面覆有碘離職子配體的硫化鉛奈米晶體(PbS/I^-),作為中間相的結晶催化核。而能有效的加速中間相的形成與相轉變,導致大幅增加鈣鈦礦結晶的速率、加強的方向性及結晶度,亦增加薄膜表面覆蓋度,而使元件光電效率也從14%提升至17%。


    In this work, we have used combined in-situ grazing-incidence X-ray scattering, X-ray diffraction, and X-ray photoemission spectroscopy, to resolve the intermediate structure and crystallization kinetics of CH3NH3PbI3-xClx perovskite. After spin-cast from a DMF solution, the precursor PbCl2 and MAI of 3:1 molar ratio would preferentially form an intermediate phase (CH3NH3)2Pb(Cl2I2)·CH3NH3I in the early stage of high temperature (ca. 110 。C) annealing. The resolved intermediate structure (L1) comprises layers of 2-D ordered lead-halide octahedra intercalated with MAI layers, and could direct 3-D perovskite formation during prolong annealing, in a two-stage formation process. At 110 。C, formation of highly oriented L1 phase dominates over randomly oriented perovskite formation in the first stage; in the second stage, oriented perovskite crystals are formed mainly from the L1-templated conversion. Kinetic competition and conversion between the L1 phase and perovskite formation in the two-stage process are elucidated by Avrami analysis and the corresponding activation energy Ea extracted. The Avrami exponent n = 1 is obtained for the direct formation of perovskite in the first stage with Ea1 =180 kJ/mol, whereas n = 3.5 and Ea2 = 66 kJ/mol are obtained for the perovskite crystals formed from L1-templated conversion. The L1 phase is of a close Ea value of 124 kJ/mol, supporting the proposed L1-to-perovskite conversion.
    In the second part of the study, we have used inorganic nanocrystals of PbS surrounded with MAI as embedded crystallization nuclei to enhance nucleation-dominated formation of the intermediate phase. With PbS nanocrystals mixed into the perovskite precursor solution, the hence spin-cast precursor film is found to have substantially enhanced perovskite crystallization rate owing to fast formation and conversion of the L1 phase at 110 。C annealing. Correspondingly observed are improved crystallinity, orientation along vertical direction, and surface coverage of perovskite. These lead to an enchantment in PCE to 17% from the 14% for a pristine case, proving the concept of using cryptographically aligned nanocrystals as seeded crystallization nuclei.

    中文摘要 i Abstract ii 誌謝 iv 圖目錄 viii 1. 緒論 1 1.1. 太陽能電池 1 1.2. 有機–無機鈣鈦礦太陽能電池 4 1.3. 鈣鈦礦太陽能電池運作機制 9 1.4. 有機–無機鈣鈦礦薄膜品質對元件效率影響 14 1.5. CH3NH3PbI3-xClx結晶與成膜機制 19 1.6. 研究動機 27 2. 研究方法與原理 28 2.1. 太陽能電池性質測量 28 2.2. 使用X光進行材料結構分析 34 2.2.1. 時間解析掠角X光散射(Time-resolved grazing incidence X-ray scattering) 34 2.2.2. X光光電子光譜(XPS) 36 2.3. CH3NH3PbI3結晶相變化 37 3. 元件製備及儀器測量 39 3.1. 太陽能電池元件製程 39 3.1.1. 鈣鈦礦前驅物溶液配製 39 3.1.2. 電子傳輸層製備 39 3.1.3. 圓形硫化鉛奈米粒子合成 40 3.1.4. 硫化鉛奈米晶體之配體置換步驟 42 3.1.5. 鈣鈦礦太陽能電池元件製程 43 3.2. 儀器介紹 45 3.2.1. EQE 量測 45 3.2.2. 掃描式電子顯微鏡 46 3.2.3. 太陽光模擬器及電流密度-電壓特性測量 47 3.2.4. 藥品 48 3.2.5. 掠角小角度/寬角度X光散射 (GISWAX/GIWAXS) 49 3.2.6. GIWAXS實驗流程 52 3.2.7. 高解析度X光繞射 55 3.2.8. X光光電子能譜(XPS) 56 3.2.9. XPS實驗步驟 57 4. 結果與討論 58 4.1. X光觀察鈣鈦礦及中間相結晶 58 4.2. 中間相至鈣鈦礦結晶的演變過程 68 4.3. 由XPS確認中間相組成及電子結構 73 4.4. 中間相及鈣鈦礦結晶成長動力學 77 4.4.1. 溫度所造成的結晶行為差異 77 4.4.2. 結晶動力學解析 82 5. 結論 87 6. 以硫化鉛奈米晶粒混參調控有機-鹵素化鉛鈣鈦礦太陽能電池薄膜晶體的成核成長行為 88 6.1. 摘要 89 6.2. 緒論 89 6.3. 結果與討論 92 6.4. 結論 99 7. 總結 100 8. 參考文獻 101 9. 附錄 107

    (1) Cheng, Z.; Lin, J. CrystEngComm 2010, 12, 2646-2657.
    (2) Bednorz, J. G.; Müller, K. A. Physik B - Condensed Matter 1986, 64, 189-193.
    (3) P. V. Lambeck, G. H. J. Journal of Physical Chenistry 1986, 90, 2555-2560.
    (4) M. A. Haase, J. Q., J. M. DePuydt, and H. Cheng Applied Physics Letters 1991, 59.
    (5) Xiaoxiang Xu, C. R., Paraskevi Efstathiou, John T. S. Irvine Nature Materials 2012, 11, 595-598.
    (6) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050-6051.
    (7) Kenichiro Tanaka, T. T., Takuma Ban, Noboru Miura Solid State Communications 2003, 127, 619-623.
    (8) Guichuan Xing, N. M., Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel,Subodh Mhaisalkar,Tze Chien Sum Science 2013, 342, 344-346.
    (9) Shuangyong Sun, T. S., Nripan Mathews, Martial Duchamp, Chris Boothroyd, Guichuan Xing, Tze Chien Sum bce, Yeng Ming Lam 2014, 7, 399-407.
    (10) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Scientific Reports 2012, 2, 591-600.
    (11) Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I. Physical Chemistry Letters 2014, 5, 1628-1635.
    (12) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith1, H. J. Science 2012, 338, 643-647.
    (13) Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G.; Gigli, G.; Angelis, F. D.; Mosca, R. Chemistry of Materials 2013, 25, 4613-4618.
    (14) Hui Yu, F. W., Fangyan Xi , Wenwu Li, Jian Chen, Ni Zhao Advanced Functional Materials 2014, 24, 7102-7108.
    (15) Xing G, M. N., Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC Science 2013, 342, 314-343.
    (16) Valerio D’Innocenzo, G. G., Marcelo J. P. Alcocer, Ajay Ram Srimath Kandada, Samuel D. Stranks, Michael M. Lee, Guglielmo Lanzani, Henry J. Snaith, Annamaria Petrozza Nature Communications 2014, 5.
    (17) Zhen Fan, J. X., Kuan Sun, Lei Chen, Yating Hu, Jianyong Ouyang, Khuong P. Ong, Kaiyang Zeng, John Wang Physical Chemistry Letters 2015, 6, 1155-1161.
    (18) E. L. Unger, E. T. H., C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforod, M. D. McGehee Energy & Environmental Science 2014, 7, 3690-3698.
    (19) Brian E. Hardin, H. J. S., Michael D. McGehee Nature Photonics 2012, 6, 162-169.
    (20) Snaith, H. J. Journal of Physical Letters 2013, 4, 3623-3630.
    (21) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Moser, J.-H. Y. J. E.; ̈tzel, M. G.; Park1, N.-G. Scientific Reports 2012, 2, 591-600.
    (22) Samuel D. Stranks, G. E. E., Giulia Grancini, Christopher Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria Petrozza, Henry J. Snaith Science 2013, 342, 341-344.
    (23) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. Journal of the American Chemical Society 2014, 136, 622-625.
    (24) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. Science 2015, 347, 522-525.
    (25) Saliba, M.; Tan, K. W.; Sai, H.; Moore, D. T.; Scott, T.; Zhang, W.; Estroff, L. A.; Wiesner, U.; Snaith, H. J. Journal of Physical Chenistry C 2014, 118, 17171-17178.
    (26) Pablo Docampo, J. M. B., Mariam Darwich, Giles E. Eperon & Henry J. Snaith 2013, 4, 2761-2766.
    (27) Liang, P.-W.; Liao, C.-Y.; Chueh, C.-C.; Zuo, F.; Williams, S. T.; Xin, X.-K.; Lin, J.; Jen, A. K.-Y. Advance Materials 2014, 26, 3728-3754.
    (28) Chang, C.-Y.; Chu, C.-Y.; Huang, Y.-C.; Huang, C.-W.; Chang, S.-Y.; Chen, C.-A.; Chao, C.-Y.; Su, W.-F. ACS Applied Materials and Interfaces 2015, 7, 4955-4961.
    (29) Giles E. Eperon, V. M. B., Pablo Docampo, Alain Goriely, Henry J. Snaith 2014, 24, 151-157.
    (30) Sandeep Pathak, A. S., Aditya Sadhanala, Felix Deschler, Amir Haghighirad, Nobuya Sakai, Karl C. Goedel, Samuel D. Stranks, Nakita Noel, Michael Price, Sven Huttner, Nicholas A. Hawkins, Richard H. Friend, Ullrich Steiner, and Henry J. Snaith ACS Nano 2015, 9, 2311-2320.
    (31) Sabba Dharani, H. A. D., Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Du Yonghua, Nripan Mathews, Pablo P. Boix, Subodh G. Mhaisalkar Nanoscale 2014, 6, 13854-13860.
    (32) Qingfeng Dong, Y. Y., Yuchuan Shao, Yanjun Fang, Qi Wang, Jinsong Huang Energy & Environmental Science 2015, 8, 2464-2470.
    (33) Dong Q, F. Y., Shao Y, Mulligan P, Qiu J, Cao L, Huang J Science 2015, 347, 967-970.
    (34) Jongseob Kim, S.-H. L., Jung Hoon Lee, and Ki-Ha Hong J. Phys. Chem Lett 2014, 5.
    (35) Ilya A. Shkrob, T. W. M. J. Phys. Chem. Lett 2014, 5, 1066-1071.
    (36) Yuzhuan Xu, L. Z., Jiangjian Shi, Songtao Lv, Xin Xu, Junyan Xiao, Juan Dong, Huijue Wu, Yanhong Luo, Dongmei Li, and Qingbo Meng ACS Appl. Mater. Interfaces 2015, 7, 2242-2248.
    (37) Guichuan Xing, N. M., Swee Sien Lim, Natalia Yantara, Xinfeng Liu, Dharani Sabba, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum nature Materials 2014, 13, 476-480.
    (38) Chuantian Zuo, L. D. Nanoscale 2014, 6, 9935-9938.
    (39) Xin Guo, C. M., Charles Kolodziej, Anna C. S. Samia, Yixin Zhao, Clemens Burda Dalton Transactions 2016, 45, 3806-3813.
    (40) Yaron Tidhar, E. E., Haim Weissman, Dorin Zohar, Gary Hodes, David Cahen, Boris Rybtchinski, Saar Kirmayer JACS 2014, 136, 13249-13256.
    (41) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nature 2014, 13, 897-913.
    (42) Feng Xian Xie, D. Z., Huimin Su, Xingang Ren, Kam Sing Wong, Michael Gratzel, Wallace C. H. Choy ACS Nano 2015, 9, 639-646.
    (43) Xiong Li, D. B., Chenyi Yi, Jean-David Décoppet, Jingshan Luo, Shaik Mohammed Zakeeruddin, Anders Hagfeldt, Michael Grätzel Science 2016, 353, 58-62.
    (44) Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Sargent, S. H. E. H. Nature 2015, 523, 324-328.
    (45) Li, S.-S. i.; Chang, C.-H.; Wang, Y.-C.; Lin, C.-W.; Wang, D.-Y.; Lin, J.-C.; Chen, C.-C.; Sheu, H.-S.; Chia, H.-C.; Wu, W.-R.; Jeng, U.-S.; Liang, C.-T.; Sankar, R.; Chou, F.-C.; Chen, a. C.-W. Energy & Environmental Science 2016, 9, 1282-1289.
    (46) Miyadera, T.; Shibata, Y.; Koganezawa, T.; Murakami, T. N.; Sugita, T.; Tanigaki, N.; Chikamatsu, M. Nano Letters 2015, 15, 5630-5634.
    (47) Chun-Yu Chang, Y.-C. H., Cheng-Si Tsao, Wei-Fang Su ACS Appl. Mater. Interfaces 2016, 8, 26712-26721.
    (48) Hsinhan Tsai, W. N., Jean-Christophe Blancon, Constantinos C. Stoumpos, Reza Asadpour, Boris Harutyunyan, Amanda J. Neukirch, Rafael Verduzco, Jared J. Crochet, Sergei Tretiak, Laurent Pedesseau, Jacky Even, Muhammad A. Alam, Gautam Gupta, Jun Lou, Pulickel M. Ajayan, Michael J. Bedzyk, Mercouri G. Kanatzidis, Aditya D. Mohite Nature 2016, 536, 312-316.
    (49) Kwan Wee Tan, D. T. M., Michael Saliba, Hiroaki Sai, Lara A. Estroff, Tobias Hanrath, Henry J. Snaith, Ulrich Wiesner ACS Nano 2014, 8, 4730-4739.
    (50) Wenchao Huang , F. H., Eliot Gann , Yi-Bing Cheng , Christopher R. McNeill Adv. Funct. Mater. 2015, 25, 5529-5536.
    (51) Benjamin J. Foley, J. G., Blaire A. Sorenson, Alexander Z. Chen, J. Scott Niezgoda, Matthew R. Alpert, Angela F. Harper, Detlef-M. Smilgies,; Paulette Clancy, W. A. S., Joshua J. Choi J. Mater. Chem. A 2017, 5, 113-123.
    (52) Alexander T. Barrows , S. L., Andrew J. Pearson, David Babonneau, Alan D. F. Dunbar, and David G. Lidzey Adv. Funct. Mater. 2016, 26, 4934-4942.
    (53) David T. Moore, H. S., Kwan W. Tan, Detlef-M. Smilgies, Wei Zhang, Henry J. Snaith; Ulrich Wiesner, L. A. E. JACS 2015, 137, 2350-2358.
    (54) Emma R. Dohner, A. J., Liam R. Bradshaw, Hemamala I. Karunadasa JACS 2014, 136, 13154-13157.
    (55) www.qigaipo.com.
    (56) Yager, K. G.
    (57) http://efd.nsrrc.org.tw/EFD.php?num=245
    (58) P. S. Whitfield, N. H., W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, M. K. Crawford Scientific Reports 2016, 6, 35685-35699.
    (59) Ning Z, D. H., Zhang Q, Voznyy O, Sargent EH ACS Nano 2014, 8, 10321-10327.
    (60) Wu, W.-R., Su, C.-J., Chuang, W.-T., Huang, Y.-C., Yang, P.-W., Lin, P.-C., Chen, C.-Y., Yang, T.-Y., Su, A.-C., Wei, K.-H., Liu, C.-M. & Jeng, U., Adv. Energy Mater. 2017, 7, 16018421601853.
    (61) Baker, J. L.; Jimison, L. H.; Mannsfeld, S.; Volkman, S.; Yin, S.; Subramanian, V.; Salleo, A.; Alivisatos, A. P. & Toney, M. F. Langmuir 2010, 26, 9146−9151.
    (62) Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. Phys. Rev. B 1992, 46, 6671-6687
    (63) Ortmann, F., Bechstedt, F, Schmidt, W. G. 2006, Phys. Rev. B , 73, 205101
    (64) Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson K. & Payne, M. C Zeitschrift fuer Kristallographie 2005, 220, 567-570
    (65) Pfrommer, B. G., Cote, M., Louie, S. G., Cohen, M. L. J. Comput. Phys.1997, 131, 133-140.

    QR CODE