研究生: |
潘昭璇 Pan, Chao-Hsuan |
---|---|
論文名稱: |
有機化學合成法製備中溫固態燃料電池陽極材料及其電性分析 Chemical Synthesis and Electrical Conductivities of Materials for IT-SOFC Anode |
指導教授: |
簡朝和
Jean, Jau-Ho |
口試委員: |
王錫福
Wang, Sea-Fue 向性一 Hsiang, Hsing-I |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 固態氧化物燃料電池 、離子導電 、電子導電 |
外文關鍵詞: | SOFC, ionic conductivity, electronic conductivity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有機化學合成法製備均質之BaCe0.9Zr0.1O3,並以不同的三價陽離子(Yb, Y, Dy, Gd, Eu)取代晶格中Ce位置,觀察不同陽離子對導電率之影響。其中以BaCe0.7Zr0.1Dy0.2O3-δ具有較佳之穩定性及導電性,深入研究其缺陷化學與導電率的關係,發現電洞導電特性和氧氣分壓成1/4次方關係,推導出離子及電洞各別之導電率及活化能,並算出不同氧分壓下之遷移數(Transference Number),可知高氧分壓下,導電度由電洞貢獻;低氧分壓下,由離子所貢獻。並更進一步探討添加不同鋯含量對材料穩定性的影響,其中當摻雜鋯含量大於0.3 mol時,可於二氧化碳氣氛下穩定存在,且BaCe0.5Zr0.3Dy0.2O3-δ之導電率亦符合所推導出之缺陷化學。
[1] A. Weber, and E. I.Tiffee, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications,” J. Power Sources, 127, 273–283 (2004).
[2] C. Sun, and U. Stimming, ”Recent Anode Advances in Solid Oxide Fuel Cells,” J. Power Sources, 171, 247-260 (2007).
[3] K. D. Kreuer, “Aspects of Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-type Oxide,” Solid State Ionics, 125, 285-302 (1999).
[4] H.G. Bohn, and T. Schober, “Electrical Conductivity of the High‐Temperature Proton Conductor BaZr0.9Y0.1O2.95,” J. Am. Ceram. Soc., 83, 768-772 (2000).
[5] K. D. Kreuer, “Proton-Conducting Oxide,” Annu. Rev. Mater. Res., 33, 333–359 (2003).
[6] N. Bonanos, K. S. Knight, and B. Ellis, “Perovskite Solid Electrolytes: Structure, Transport Properties and Fuel Cell Applications,” Solid State Ionics, 79, 161-170 (1995).
[7] C. Zuo, S. Zha, M. Liu, M.Hatano, and M. Uchiyama, “Ba (Zr 0.1 Ce 0.7 Y 0.2) O 3− δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells,” Adv. Mater., 18, 3318-20 (2006).
[8] W. G. Coors, and D. W. Readey, “Proton Conductivity Measurements in Yttrium Barium Cerate by Impedance Spectroscopy,” J. Am. Ceram. Soc., 85, 2763-40 (2002).
[9] W. B. Wang, J. W. Liu, Y. D. Li, H. T. Wang, F. Zhang, and G. L. Ma, “Microstructures and Proton Conduction Behaviors of Dy-doped BaCeO3 Ceramics at Intermediate Temperature,” Solid State Ionics, 181, 667-671 (2010).
[10] K. H. Ryu, and S. M. Haile, “Chemical Stability and Proton Conductivity of Doped BaCeO3-BaZrO3 Solid Solutions,” Solid State Ionics, 125, 355-367 (1999).
[11] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic Conduction in Zr-substituted BaCeO3,” Solid State Ionics, 138, 91-98 (2000).
[12] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites,” J. Mater. Sci., 36, 1149-1160 (2001).
[13] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R.Gerbasi, “High Conductivity and Chemical Stability of BaCe1-x-yZrxYyO3-δ Proton Conductors Prepared by a Sol-gel Method,” J. Mater. Chem.,18, 5120-5128, (2008).
[14] N. Zakowsky, S. Williamson, and J. T. S. Irvine, “Elaboration of CO2 Tolerance Limits of BaCe0.9Y0.1O3-δElectrolytes for Fuel Cells and Other Application,” Solid State Ionics, 176, 3019-3026, (2005).
[15] E. Fabbri, A. D. Epifanio, E. D. Bartolomeo, S. Licoccia, E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8-xZrx)Y0.2O3-δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” Solid State Ionics, 179, 558-564, (2008).
[16] L. Doubova, S. Barison, S. Boldrini, M. Fabrizio, C. Mortalo, C. Pagura, “Conductivity Studies of Sol-Gel Prepared BaCe0.85-xZrxY0.15O3-δ Solid Electrolytes Using Impedance Spectroscopy,” J. Appl. Electrochem., 39, 2129-2141, (2009).
[17] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, “Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ,” Science, 326, 126-129 (2009).
[18] S. Barison, M. Battagliarin, T. Cavallin, S. Daolio, L. Doubova, M. Fabrizio, C.Mortalò, S. Boldrini, and R.Gerbasi, “Barium Non-Stoichiometry Role on the Properties of Ba1+xCe0.65Zr0.20Y0.15O3-δ Proton Conductors for IT-SOFCs,” Fuel Cells, 5, 360-368 (2008).
[19] K. D. Kreuer, St. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, ” Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications,” Solid State Ionics, 145, 295-306 (2001).
[20] E. Fabbri, T. Oh,S. Licoccia, E. Traversa, and E. D. Wachsman, ”A Novel Composite Cathode for Low‐Temperature SOFCs Based on Oxide Proton Conductors,” J. Electrochem. Soc., 156, B38-45 (2009).
[21] S. J. Song, E. D. Wachsman, S. E. Dorris, and U. Balachandranb, “Defect Structure and n-Type Electrical Properties of SrCe0.95Eu0.05O3-δ,” J. Electrochem. Soc., 150, A1484-90 (2003).
[22] C. Cougoulic, T. Pagnier, and G. Lucazeau, “Raman Spectroscopy of Peroveskite-Type BaCexZr1-xO3 (0≦x≦1),” J. Solid State Chem., 142, 220-227, (1999).
[23] K. D. Kreuer, “On the Development of Proton Conducting Materials for Technological Applications,” Solid State Ionics, 97, 1-15 (1997).
[24] E. Takayama-Muromachi and A. Navrotsky, “Energetics of compounds (A2+ B4+ O3) with the perovskite structure,” J. Solid State Chem., 142, 244-256 (1988).