研究生: |
林泉融 Lin, Chuan Jung |
---|---|
論文名稱: |
鋁誘發固相磊晶技術異質磊晶矽鍺薄膜於矽基板上之研究 Hetero-epitaxial growth Si1-xGex film via a low temperature aluminum-induced solid phase epitaxy (AI-SPE) process |
指導教授: |
陳福榮
Chen, Fu Rong |
口試委員: |
林澤勝
Lin, Tzer Shen 謝建國 Hsieh, Chien Juo 孫文檠 Sun, Wen Ching 李坤穆 Lee, Kuen Mu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 鋁誘發固相磊晶 、矽鍺 |
外文關鍵詞: | aluminum-induced solid phase epitaxy, Silicon germanium |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
減少太陽能元件製造所需的成本,將使聚光型太陽能電池在市場上更有競爭能力。其中一種方式就是利用單晶矽基板取代單晶鍺或砷化鎵(GaAs)基板,在矽基板上透過異質磊晶的方式成長不同鍺濃度之矽鍺磊晶層,最後單晶矽基板的表面具有鍺的晶格特性,因此可以將三五族太陽能電池直接生長在單晶矽基板上,大幅降低電池成本。本研究中,將利用鋁誘發固相磊晶技術於低溫環境下成長不同鍺濃度之矽鍺磊晶層。在以往的研究中,鋁誘發結晶多晶矽或多晶鍺的機制已被完善的探討;但是在鋁誘發固相磊晶的系統中仍是一知半解,在本研究中,我們將探討 (1) 非晶鍺預摻雜位置;(2) 非晶鍺預摻雜濃度; (3) 反應溫度對鋁誘發固相磊晶系統的影響。研究結果表明,矽鍺比例在鋁誘發固相磊晶反應後是可以透過預摻雜非晶鍺的濃度來控制,且反應溫度應高於400˚C。
基於上述研究結果,再透過穿透式電子顯微鏡臨場加熱系統觀察鋁誘發固相磊晶的整體反應過程及熱力學計算及分析,可以將鋁誘發固相磊晶的反應機制完整建立: (1) 非晶矽鍺受到鋁外層自由電子的影響,使共價鍵的鍵能弱化或斷鍵,形成自由原子;(2) 因擴散驅動力的驅使,自由原子會透過鋁的晶界擴散到鋁和單晶矽基板的界面,並以非晶型態穩定在此並累積(擴散);(3) 當非晶型態矽鍺累積厚度超過臨界厚度時,造成系統不穩定,為使系統趨於穩定,非晶矽鍺會在鋁和單晶矽基板界面產生一個新的成核點(結晶型態),該成核點的晶相會受到單晶矽基板表面原子排列的影響,沿著單晶矽基板有序排列;(4) 非晶矽鍺會透過鋁的晶界繼續擴散,供應成核點持續垂直成長及側向生長(長晶),由於要釋放應力的因素,鋁會往原本非晶矽鍺的位置移動;(5) 最後形成連續的矽鍺磊晶薄膜。基於上述研究之結果,最後我們利用多道鋁誘發固相磊晶製程成功的製備鍺虛擬基板,它可以提供給聚光型太陽能電池或積體電路等作為低成本基板。
Reducing the solar cell manufacture cost makes the concentrator photovoltaic (CPV) has more competitive in the market. One of the potential method is to use a single crystal silicon substrate (sc-Si) substituted germanium or gallium arsenide (GaAs) substrate. Growth of Si1-xGex epitaxial layer on single crystal Si substrate with different Ge concentration makes the single crystal Si substrate have Ge properties including lattice constant and so on, which maybe significant reduce the CPV manufacture cost. In this study, we will use the aluminum-induced solid phase epitaxy (AI-SPE) process to fabricate Si1-xGex epitaxial layer with different Ge concentration under low-temperature. In previous study, the mechanism of aluminum-induced crystallization (AIC), it used to grow poly-Si or poly-Ge, has well studied and build up. However, researchers have a superficial knowledge of aluminum-induced solid phase epitaxial. We believe that the mechanism of AI-SPE should be build-up if we would like to control the reaction process.
In this study, we will firstly discuss the effect of (1) pre-doping Ge position, (2) pre-doping Ge concentration, and (3) reaction temperature during AI-SPE process. According to the results, the Ge concentration indeed can be well controlled via pre-doping Ge technique after AI-SPE process, and the optimal reaction temperature should higher that 400˚C.
Moreover, we will use in-situ heating transmission electron microscopy to observer the AI-SPE reaction process, and the analysis of the thermodynamics exactly supports the finding from in situ TEM. Based on these results, the mechanism of AI-SPE can be concluded into five steps: (1) The covalent bond of a-Si1-xGex will be weakened and formed "free atoms" by electrons that it is surrounding the surface of aluminum (Screening effect); (2) The free atoms driven by the diffusion driving force, it will diffuse through aluminum grain boundaries to the interface between aluminum and single crystal Si substrate, and the free atoms will thermodynamically stable accumulate at interface until its thickness reaches the critical thickness (Diffusion); (3) As the accumulated thickness reaching the critical thickness, the system will become unstable. The a-Si1-xGex will generate a new crystalline phase to reduce the free energy making the system become stable, that is, Si1-xGex nuclei. the crystal orientation of Si1-xGx nuclei will affect by single crystal Si substrate and hetero-epitaxial grow on it (Nucleation); (4) The free atoms will continuously diffuse to the interface between aluminum and single crystal Si substrate, and supply to the nucleus for vertical and lateral growth. Simultaneously, the stress existing in the aluminum film generated during free atoms diffusion will release, thus, the aluminum will move to the position of a-Si1-xGex (Grain growth); (5) Finally, to form a continuous silicon-germanium epitaxial layer on the single crystal Si substrate. Based on the above study results, we finally successful prepared a germanium virtual substrate via multi-run aluminum-induced solid-phase epitaxy process, which can provide to CPV or integrated circuit as a low-cost substrate or template.
1. 彭淮棟. 大氣二氧化碳濃度 增幅新高. 2016; Available from: http://money.udn.com/money/story/5599/1556623-%E5%A4%A7%E6%B0%A3%E4%BA%8C%E6%B0%A7%E5%8C%96%E7%A2%B3%E6%BF%83%E5%BA%A6-%E5%A2%9E%E5%B9%85%E6%96%B0%E9%AB%98.
2. Osborne, M., IHS forecasts global solar market to top 69GW in 2016. PVTECH, 2016.
3. 王智弘. 中美日需求維持高檔 2016年太陽能安裝量攀新高. 2016; Available from: http://www.mem.com.tw/article_content.asp?sn=1605310017.
4. Wesoff, E. First Solar CEO: ‘By 2017, We’ll Be Under $1.00 per Watt Fully Installed’. 2015; Available from: http://www.greentechmedia.com/articles/read/First-Solar-CEO-By-2017-Well-be-Under-1.00-Per-Watt-Fully-Installed.
5. Weber, E.R., THE PRESENT STATUS AND FUTURE PERSPECTIVES OF SOLAR ENERGY TECHNOLOGIES. 2015.
6. Lewis, N.S., Basic Research Needs for Solar Energy Utilization. 2005.
7. Martí, A. and G.L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 1996. 43(2): p. 203-222.
8. Yu, W.J., et al., Semitransparent Polymer Solar Cells with 5% Power Conversion Efficiency Using Photonic Crystal Reflector. Acs Applied Materials & Interfaces, 2014. 6(1): p. 599-605.
9. Depauw, V., et al., Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals. Ieee Journal of Photovoltaics, 2014. 4(1): p. 215-223.
10. Sun, L. and C. Jiang, Semiconductor quantum dot-doped glass as spectral converter for photovoltaic application. Chinese Science Bulletin, 2014. 59(1): p. 16-22.
11. Gupta, A., M. Vashistha, and P. Sharma, Single junction a-Si:H solar cell with a-Si:H/nc-Si:H/a-Si:H quantum wells. Thin Solid Films, 2014. 550: p. 643-648.
12. Xu, H.B., et al., Application of phosphorus diffusion gettering process on upgraded metallurgical grade Si wafers and solar cells. Applied Energy, 2010. 87(11): p. 3425-3430.
13. Venkataraj, S., et al., Light Scattering Enhancement by Double Scattering Technique for Multijunction Thin-Film Silicon Solar Cells. Ieee Journal of Photovoltaics, 2013. 3(2): p. 605-612.
14. Kohata, H. and Y. Saito, Maskless texturization of phosphorus-diffused layers for crystalline Si solar cells by plasmaless dry etching with chlorine trifluoride gas. Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2124-2128.
15. Zhang, J., et al., Si nanocrystal-based triple-layer anti-reflection coating for Si solar cells. Journal of Applied Physics, 2013. 114(5).
16. Gangopadhyay, U., et al., Anti-reflective nanocomposite based coating for crystalline silicon solar cells with noticeable significance. Journal of Renewable and Sustainable Energy, 2013. 5(3).
17. Wolf, M., et al., Solar cell efficiency and carrier multiplication in Si(1-x)Ge(x) alloys. Journal of Applied Physics, 1998. 83(8): p. 4213-4221.
18. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519.
19. Cotal, H., et al., III-V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2009. 2(2): p. 174-192.
20. Román, J.M., State-of-the-art of III-V solar cell fabrication technologies, device designs and applications. Advanced Photovoltaic Cell Design, 2004.
21. Kim, Y.S., et al., Advanced wafer thinning technology and feasibility test for 3D integration. Microelectronic Engineering, 2013. 107: p. 65-71.
22. M.W. Wanlass, et al. ADVANCED HIGH-EFFICIENCY CONCENTRATOR TANDEM SOLAR CELLS. in 22nd IEEE Photovoltaic Specialists Conference. 1991.
23. Dimroth, F., et al., Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 2014. 22(3): p. 277-282.
24. EnergyTrend PV. Available from: http://pv.energytrend.com/.
25. NSM Archive - Silicon Germanium (SiGe). Available from: www.ioffe.ru/SVA/NSM/Semicond/SiGe/.
26. Simoen, C., Germanium-Based Technologies: From Materials to Devices. 2007: Elsevier Ltd.
27. Chrastina, D., et al., Thin relaxed SiGe virtual substrates grown by low-energy plasma-enhanced chemical vapor deposition. Journal of Crystal Growth, 2005. 281(2-4): p. 281-289.
28. Isella, G., et al., Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electronics, 2004. 48(8): p. 1317-1323.
29. Capewell, A.D., et al., Terrace grading of SiGe for high-quality virtual substrates. Applied Physics Letters, 2002. 81(25): p. 4775-4777.
30. Sharif, K., et al., Epitaxial silicon thin films by low-temperature aluminum induced crystallization of amorphous silicon for solar cell applications. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2. 2006. 1676-1679.
31. Ozmen, O.T., M. Karaman, and R. Turan, Polysilicon thin films fabricated by solid phase crystallization using reformed crystallization annealing technique. Thin Solid Films, 2014. 551: p. 181-187.
32. Hong, W.-E. and J.-S. Ro, Kinetics of solid phase crystallization of amorphous silicon analyzed by Raman spectroscopy. Journal of Applied Physics, 2013. 114(7).
33. Ab Razak, S.N. and N. Bidin, Aluminium-Induced Crystallization of Silicon Thin Film by Excimer Laser Annealing. Sains Malaysiana, 2013. 42(2): p. 219-222.
34. Liu, F., et al., Rapid melt crystallization of amorphous-silicon thin films. Applied Physics Letters, 2013. 102(8).
35. Amin, M.S., N. Hozhabri, and R. Magnusson, Effects of solid phase crystallization by rapid thermal annealing on the optical constants of sputtered amorphous silicon films. Thin Solid Films, 2013. 545: p. 480-484.
36. Peng, C.-C., C.-K. Chung, and J.-F. Lin, Formation of microcrystalline silicon films using rapid crystal aluminum induced crystallization under low-temperature rapid thermal annealing. Thin Solid Films, 2010. 518(23): p. 6966-6971.
37. Nast, O., The aluminium-induced layer exchange forming polycrystalline silicon on glass for thin-film solar cells. 2000.
38. Wagner, R.S. and W.C. Ellis, VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Applied Physics Letters, 1964. 4(5): p. 89-90.
39. Knaepen, W., et al., In situ x-ray diffraction study of metal induced crystallization of amorphous germanium. Journal of Applied Physics, 2009. 105(8).
40. Okamoto, H. and T. Massalski, The Au− Si (gold-silicon) system. Bulletin of Alloy Phase Diagrams, 1983. 4(2): p. 190-198.
41. Allen, L., et al., Two-dimensional Si crystal growth during thermal annealing of Au/polycrystalline-Si bilayers. Physical Review B, 1990. 41(12): p. 8203.
42. Chen, Z., et al., Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing. Applied surface science, 2005. 250(1): p. 3-8.
43. Sadoh, T., et al., Quasi-single crystal SiGe on insulator by Au-induced crystallization for flexible electronics. Japanese Journal of Applied Physics, 2016. 55(3S1): p. 03CB01.
44. Schneider, J., et al., A simple model explaining the preferential (100) orientation of silicon thin films made by aluminum-induced layer exchange. Journal of Crystal Growth, 2006. 287(2): p. 423-427.
45. Hwang, J.-D., et al., Large-Grain Epitaxial Thickening Polycrystalline Silicon Films on AIC-Seed Layer by HWCVD with Different Hydrogen Dilution. Electrochemical and Solid State Letters, 2012. 15(3): p. H69-H71.
46. Lee, S.R., K.M. Ahn, and B.T. Ahn, Silicon epitaxial growth on poly-Si film by HWCVD for low-temperature poly-Si TFTs. Journal of the Electrochemical Society, 2007. 154(9): p. H778-H781.
47. Fuhs, W., et al., A novel route to a polycrystalline silicon thin-film solar cell. Solar Energy, 2004. 77(6): p. 961-968.
48. Nast, O., et al., Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Applied Physics Letters, 1998. 73(22): p. 3214-3216.
49. Nast, O. and A.J. Hartmann, Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. Journal of Applied Physics, 2000. 88(2): p. 716-724.
50. Nast, O. and S.R. Wenham, Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. Journal of Applied Physics, 2000. 88(1): p. 124-132.
51. Gall, S., et al., Aluminum-induced crystallization of amorphous silicon. Journal of Non-Crystalline Solids, 2002. 299: p. 741-745.
52. Wei, S.-Y., et al., Ultrafast Al(Si)-induced crystallisation process at low temperature. Crystengcomm, 2012. 14(15): p. 4967-4971.
53. Zou, M., et al., Nano-aluminum-induced crystallization of amorphous silicon. Materials Letters, 2006. 60(11): p. 1379-1382.
54. Sarikov, A., et al., Theoretical study of the kinetics of grain nucleation in the aluminium-induced layer-exchange process. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 980-983.
55. Schneider, J., et al., Aluminum-induced crystallization: Nucleation and growth process. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 972-975.
56. Wang, J.Y., et al., Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon. Applied Physics Letters, 2006. 88(6).
57. Stoeger-Pollach, M., et al., Phase transformations of an alumina membrane and its influence on silicon nucleation during the aluminium induced layer exchange. Thin Solid Films, 2007. 515(7-8): p. 3740-3744.
58. Kurosawa, M., et al., Orientation-controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation. Applied Physics Letters, 2009. 95(13).
59. Tang, Z., et al., Preparation of high quality polycrystalline silicon thin films by aluminum-induced crystallization. Thin Solid Films, 2009. 517(19): p. 5611-5615.
60. Wang, Z., et al., Real-Time Visualization of Convective Transportation of Solid Materials at Nanoscale. Nano Letters, 2012. 12(12): p. 6126-6132.
61. Lin, C.-J., et al., Growth mechanism of an aluminium-induced solid phase epitaxial (AI-SPE) Si0.5Ge0.5 layer using in situ heating transmission electron microscopy. CrystEngComm, 2016. 18(20): p. 3556-3560.
62. Lin, C.-J., et al., Hetero-epitaxial growth of stoichiometry tunable Si1-xGex film via a low temperature aluminium-induced solid phase epitaxy (AI-SPE) process. CrystEngComm, 2015. 17(33): p. 6269-6273.
63. Schneider, J., et al., Aluminium-induced crystallisation of amorphous silicon: Influence of oxidation conditions. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vols a-C, ed. K. Kurokawa, et al. 2003. 106-109.
64. Liu, Z., et al., Epitaxial growth of single-crystalline silicon-germanium on silicon by aluminium-assisted crystallization. Scripta Materialia, 2014. 71: p. 25-28.
65. Liu, Z., et al., One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering. Applied Physics Letters, 2014. 104(5): p. -.
66. Wang, Z.M., et al., "Explosive" crystallisation of amorphous germanium in Ge/Al layer systems; comparison with Si/Al layer systems. Scripta Materialia, 2006. 55(11): p. 987-990.
67. Toko, K., et al., Highly (111)-oriented Ge thin films on insulators formed by Al-induced crystallization. Applied Physics Letters, 2012. 101(7): p. 072106.
68. Toko, K., et al., Orientation control of Ge thin films by underlayer-selected Al-induced crystallization. CrystEngComm, 2014. 16(13): p. 2578-2583.
69. Katsuki, F., et al., Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate. Journal of Applied Physics, 2001. 89(8): p. 4643-4647.
70. Zhang, T., et al., Effect of stacking sequence on crystallization in Al/a-Ge bilayer thin films. Journal of Vacuum Science & Technology A, 2014. 32(3): p. -.
71. Kurosawa, M., et al., Interfacial-Oxide Layer Controlled Al-Induced Crystallization of Si1-xGex (x: 0-1) on Insulating Substrate. Japanese Journal of Applied Physics, 2009. 48(3).
72. Gjukic, M., et al., Aluminum-induced crystallization of amorphous silicon-germanium thin films. Applied Physics Letters, 2004. 85(11): p. 2134-2136.
73. Kurosawa, M., et al., Ge Fraction Dependence of Al-Induced Crystallization of SiGe at Low Temperatures. Journal of the Korean Physical Society, 2009. 54(1): p. 451-454.
74. Iwasa, T., et al., Polycrystalline silicon germanium thin films prepared by aluminum-induced crystallization. Physica Status Solidi a-Applications and Materials Science, 2010. 207(3): p. 617-620.
75. Zhang, T.-W., et al., Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe. Applied Physics Letters, 2012. 100(7).
76. Lin, J.-Y. and P.-Y. Chang, Growth of poly-crystalline silicon–germanium on silicon by aluminum-induced crystallization. Thin Solid Films, 2012. 520(23): p. 6893-6899.
77. Suzuki, H., et al., Impact of amorphous Ge thin layer at the amorphous Si/Al interface on Al-induced crystallization. Journal of Crystal Growth, 2010. 312(22): p. 3257-3260.
78. Usami, N., M. Jung, and T. Suemasu, On the growth mechanism of polycrystalline silicon thin film by Al-induced layer exchange process. Journal of Crystal Growth, 2013. 362(0): p. 16-19.
79. Niedermeier, C.A., Z. Wang, and E.J. Mittemeijer, Al-induced crystallization of amorphous SixGe1-x (0 < x < 1): Diffusion, phase development and layer exchange. Acta Materialia, 2014. 72(0): p. 211-222.
80. Hayzelden, C. and J.L. Batstone, Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films. Journal of Applied Physics, 1993. 73(12): p. 8279-8289.
81. Peng, D., et al., Ni Induced Crystallization of Amorphous SiGe. Chinese Journal of Semiconductors, 2014. 25(11): p. 5.
82. Guang-Wei, W., et al., Metal-induced crystallization of amorphous silicon and silicon germanium films. Chinese Journal of Liquid Crystals and Displays, 2009. 24(3): p. 11.
83. Donnay, J.D.H., Epitaxy, in Mineralogy. 1981, Springer US: Boston, MA. p. 149-150.
84. Nelson, M., Epitaxy growth from liquid state and it application to the fabrication of tunnel and laser diode. RCA Review, 1963. 24: p. 13.
85. Rodriguez, A., et al., Strain compensation by heavy boron doping in Si1-xGex layers grown by solid phase epitaxy. Journal of Materials Research, 1997. 12(7): p. 1698-1705.
86. Qi, W.J., et al., Investigation on solid phase epitaxy of deposited SiGe film on a Si substrate. Thin Solid Films, 1997. 293(1-2): p. 310-314.
87. Chaki, T.K., SOLID-PHASE EPITAXY - EFFECTS OF IRRADIATION, DOPANT, AND PRESSURE. Physica Status Solidi a-Applied Research, 1994. 142(1): p. 153-166.
88. Paine, D.C., et al., THE GROWTH OF STRAINED SI1-XGEX ALLOYS ON (001) SILICON USING SOLID-PHASE EPITAXY. Journal of Materials Research, 1990. 5(5): p. 1023-1031.
89. Roth, J.A., et al., Kinetics of solid phase epitaxy in thick amorphous Si layers formed by MeV ion implantation. Applied Physics Letters, 1990. 57(13): p. 1340-1342.
90. Kunii, Y., M. Tabe, and K. Kajiyama, AMORPHOUS-SI CRYSTALLINE-SI FACET FORMATION DURING SI SOLID-PHASE EPITAXY NEAR SI/SIO2 BOUNDARY. Journal of Applied Physics, 1984. 56(2): p. 279-285.
91. King-ning Tu, James W. Mayer, and L.C. Feldman, Electronic thin film science: for electrical engineers and materials scientists. 1996: Macmillan Publishing Company.
92. Ramanath, G., et al., Au-mediated low-temperature solid phase epitaxial growth of a SixGe1-x alloy on Si(001). Journal of Applied Physics, 1996. 79(6): p. 3094-3102.
93. Pretorius, R., et al., Growth mechanism for solid‐phase epitaxy of Si in the Si 〈100〉/Pd2Si/Si(amorphous) system studied by a radioactive tracer technique. Journal of Applied Physics, 1977. 48(7): p. 2886-2890.
94. King-ning Tu, James W. Mayer, and L.C. Feldman, Electronic thin film science: for electrical engineers and materials scientists
1996: Macmillan Publishing Company.
95. Majni, G. and G. Ottaviani, SOLID-PHASE EPITAXIAL-GROWTH OF SI THROUGH AL FILM. Journal of the Electrochemical Society, 1977. 124(8): p. C290-C290.
96. Majni, G. and G. Ottaviani, Large-area uniform growth of <100> Si through Al film by solid epitaxy. Applied Physics Letters, 1977. 31(2): p. 125-126.
97. Trumbore, F.A., Solid solubilities of impurity elements in germanium and silicon. Bell System Technical Journal, 1960. 39(1): p. 205-233.
98. Tsaur, B.Y., G.W. Turner, and J.C.C. Fan, Efficient Si solar cells by low-temperature solid-phase epitaxy. Applied Physics Letters, 1981. 39(9): p. 749-751.
99. Koschier, L.M. and S.R. Wenham, Improved open circuit voltage using metal mediated epitaxial growth in thyristor structure solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8(5): p. 489-501.
100. Wei, S.-Y., et al., Epitaxial growth of heavily boron-doped Si by Al(B)-induced crystallisation at low temperature for back surface field manufacturing. Crystengcomm, 2013. 15(9): p. 1680-1684.
101. Civale, Y., et al., On the Mechanisms Governing Aluminum-Mediated Solid-Phase Epitaxy of Silicon. Journal of Electronic Materials, 2009. 38(10): p. 2052-2062.
102. Liu, Z., et al., Epitaxial growth of single-crystalline silicon–germanium on silicon by aluminium-assisted crystallization. Scripta Materialia, (0).
103. Wang, Z., et al., Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Physical Review B, 2008. 77(4).
104. Hiraki, A., A Model on the Mechanism of Room Temperature Interfacial Intermixing Reaction in Various Metal‐Semiconductor Couples: What Triggers the Reaction? Journal of The Electrochemical Society, 1980. 127(12): p. 2662-2665.
105. Hiraki, A., Initial formation process of metal/silicon interfaces. Surface Science, 1986. 168(1): p. 74-99.
106. Hiraki, A., Recent developments on metal-silicon interfaces. Applied Surface Science, 1992. 56–58, Part 1: p. 370-381.
107. Wang, Z., et al., Fundamentals of Metal-induced Crystallization of Amorphous Semiconductors. Advanced Engineering Materials, 2009. 11(3): p. 131-135.
108. Wang, Z.M., et al., Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers. Physical Review B, 2008. 77(4): p. 045424.
109. Benedictus, R., A. Bottger, and E.J. Mittemeijer, Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Physical Review B, 1996. 54(13): p. 9109-9125.
110. Benedictus, R., A. Böttger, and E.J. Mittemeijer, Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries. Physical Review B, 1996. 54(13): p. 9109-9125.
111. Zhao, Y.H., J.Y. Wang, and E.J. Mittemeijer, Interaction of amorphous Si and crystalline Al thin films during low-temperature annealing in vacuum. Thin Solid Films, 2003. 433(1-2): p. 82-87.
112. Zalar, A., et al., AES depth profiling of thermally treated Al/Si thin-film structures. Vacuum, 2003. 71(1-2): p. 11-17.
113. Zhao, Y.H., J.Y. Wang, and E.J. Mittemeijer, Initial interaction of crystalline Al/amorphous Si bilayer during annealing, in Amorphous and Nanocrystalline Silicon Science and Technology- 2004, G. Ganguly, et al., Editors. 2004. p. 309-314.
114. Liu, F., F. Sommer, and E.J. Mittemeijer, Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Materialia, 2004. 52(11): p. 3207-3216.
115. He, D., J.Y. Wang, and E.J. Mittemeijer, Reaction between amorphous Si and crystalline Al in Al/Si and Si/Al bilayers: microstructural and thermodynamic analysis of layer exchange. Applied Physics a-Materials Science & Processing, 2005. 80(3): p. 501-509.
116. He, D., J.Y. Wang, and E.J. Mittemeijer, Thermodynamic and kinetic criteria for layer exchange in amorphous silicon/crystalline aluminium bilayers during annealing. Scripta Materialia, 2006. 54(4): p. 559-561.
117. Wang, J.Y., Z.M. Wang, and E.J. Mittemeijer, Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers. Journal of Applied Physics, 2007. 102(11).
118. Wang, J.Y., et al., Mechanisms of Aluminium-Induced Crystallization and Layer Exchange Upon Low-Temperature Annealing of Amorphous Si/Polycrystalline Al Bilayers. Journal of Nanoscience and Nanotechnology, 2009. 9(6): p. 3364-3371.
119. Jaegle, E.A. and E.J. Mittemeijer, Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations. International Journal of Materials Research, 2011. 102(7): p. 837-845.
120. 射頻磁控濺鍍機(RF magnetron sputter).
121. 劉如熹. X光微區分析(EDS). 2000; Available from: http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf.
122. 黃宏勝 and 林麗娟, FE-SEM-CL-EBSD分析技術簡介. 工業材料雜誌, 2003. 201.
123. 尤志州, et al., 歐傑電子能譜(AES)、二次離子質譜儀分析(SIMS)與化學分析電子術(ESCA). 2001.
124. Mooney, P.M., et al., Raman scattering analysis of relaxed GexSi1−x alloy layers. Applied Physics Letters, 1993. 62(17): p. 2069-2071.
125. Perova, T.S., et al., Composition and strain in thin Si1−xGex virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction. Journal of Applied Physics, 2011. 109(3): p. 033502.
126. Dismukes, J.P., L. Ekstrom, and R.J. Paff, Lattice Parameter and Density in Germanium-Silicon Alloys. The Journal of Physical Chemistry, 1964. 68(10): p. 3021-3027.
127. Lin, C.-j., et al., Hetero-epitaxial growth of stoichiometry tunable Si1-xGex film via a low temperature aluminium-induced solid phase epitaxy (AI-SPE) process. CrystEngComm, 2015.
128. Chen, J.S., et al., EPITAXIAL-GROWTH OF GAAS BY SOLID-PHASE TRANSPORT. Applied Physics Letters, 1991. 59(13): p. 1597-1599.
129. Toko, K., et al., Self-organization of Ge(111)/Al/glass structures through layer exchange in metal-induced crystallization. CrystEngComm, 2014. 16(41): p. 9590-9595.
130. 魏松煙, 鋁誘發結晶製備結晶/磊晶薄膜應用於太陽能電池之研究, 工程與系統科學系. 2013, 國立清華大學: 新竹市. p. 140.