研究生: |
古普 Gopi Kuppuraj |
---|---|
論文名稱: |
Conformational analysis of cofactors bound to proteins 蛋白質輔助因子構象分析 |
指導教授: |
林小喬
Lim, Carmay |
口試委員: |
林小喬
Lim, Carmay 楊立威 Yang, Lee-Wei 張子文 Chang, Tse-Wen 梁博煌 Liang, Po-Huang 張崇毅 Chang, Chung-I |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 構象分析 、QM 、金屬配位化合物 、NAD |
外文關鍵詞: | Conformation analysis, QM calculations, metal complex, NAD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Cofactors are essential small molecules that help catalyse a variety of enzymatic reactions. They are either inorganic (e.g., metal ions such as Mg2+, Mn2+, and Zn2+) or organic (e.g., NAD and ATP). Herein we have performed systematic studies on cofactor conformations from simple metal ions to complex nucleotides to elucidate their various conformations and how a given cofactor can bind to a protein for specific function. First, we have examined the geometry of metal ions in the Cambridge Structural Database to determine the key factors governing metal-ligand distances and “conformations” of metal complexes. Second, we have analysed the conformational variability of organic cofactors (NAD(P), ADP, GDP, ATP, and GTP). A key difference in the multi-atom organic cofactors from single metal ion is (a) its large conformational space due to its multiple rotatable bonds and (b) its diverse chemical groups, which are open to a variety of interactions during catalysis. These cofactors mostly prefer extended conformations upon binding to proteins to maximize interactions with the binding site residues. Some distinct nucleotide conformations were correlated to specific enzyme binding domain and function through CATH code and EC number. Torsion angles were computed to distinguish enzyme-bound nucleotide conformations or functions, especially in NAD(P). Knowledge of enzyme-bound cofactor conformations would certainly be of relevance to rational drug design since all these cofactors are involved in crucial metabolic/signalling pathways.
Alberts, I.L., Nadassy, K., and Wodak, S.J. (1998). Analysis of zinc binding sites in protein crystal structures. Protein Sci. 7, 1700-1716.
2. Allen, F.H. (2002a). The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst. B58, 380-388.
3. Allen, J.F. (2002b). Photosynthesis of ATP--Electrons, Proton Pumps, Rotors, and Poise. Cell 110, 273-276.
4. Althaus, F.R., and Richter, C. (1987). ADP-ribosylation of proteins (Berlin: Springer- Verlag).
5. Anborgh, P.H., and Parmeggiani, A. (1993). Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. Journal of Biological Chemistry 268, 24622-24628.
6. Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W.H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., et al. (2005). A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science 307, 223-227.
7. Asmuss, M., Mullenders, L.H.F., and Hartwig, A. (2000). Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol. Lett. 112-113, 227-231.
8. Bairoch, A. (2000). The ENZYME database in 2000. Nucleic Acids Res 28, 304-305.
9. Baysarowich, J., Koteva, K., Hughes, D.W., Ejim, L., Zhang, K., Junop, M., and Wright, G.D. (2008). Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr Proc Natl Acad Sci U S A 105, 4886-4891.
10. Bell, C.E., and Eisenberg, D. (1996). Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35, 1137-1149.
11. Bell, C.E., Yeates, T.O., and Eisenberg, D. (1997). Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: A comparison with NAD bound to the oxidoreductase enzymes. Protein Science 6, 2084-2096.
12. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J., et al. (2002). The Protein Data Bank. Acta Crystallographica D 58, 899-907.
13. Berthet, J.-C., Nierlich, M., and Ephritikhine, M. (2003). A comparison of analogous 4f- and 5f-element compounds: syntheses and crystal structures of triphenylphosphine oxide complexes of lanthanide(III) and uranium(III) triflates and iodides. Polyhedron 22, 3475–3482.
14. Berthon, G., ed. (1995). Handbook of metal-ligand interactions in biological fluids (New York: Marcel Dekker).
15. Bertini, I., Gray, H.B., Lippard, S.J., and Valentine, J.S. (1994). Bioinorganic Chemistry (Mill Valley, California: University Science Books).
16. Betts, M.J., and Sternberg, M.J. (1999). An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng 12, 271-283.
17. Brown, I.D., and Altermat, D. (1985). Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst. B41, 244-247.
18. Carugo, O., and Argos, P. (1997). NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins: Struct. Funct. Genet. 28, 10–28.
19. Chalk, A.J., Worth, C.L., Overington, J.P., and Chan, A.W.E. (2004). PDBLIG: Classification of small molecular protein binding in the Protein Data Bank. J. Med. Chem. 47, 3807-3816.
20. Chen, L., Petrelli, R., Felczak, K., Gao, G., Bonnac, L., Yu, J.S., Bennett, E.M., and Pankiewicz, K.W. (2008). Nicotinamide adenine dinucleotide based therapeutics. Curr Med Chem 15, 650-670.
21. Cornelissen, I., Palmer, D., David, T., Wilsbacher, L., Concengco, C., Conley, P., Pandey, A., and Coughlin, S.R. (2010). Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis. Proceedings of the National Academy of Sciences 107, 18605-18610.
22. Cotton, F.A., and Wilkinson, G. (1988). Advanced Inorganic Chemistry (New York: Jon Wiley & Sons).
23. Czura, A.W., and Czura, C.J. (2006). CD38 and CD157: biological observations to clinical therapeutic targets. Mol Med 12, 309-311.
24. DeSilva, T.M., Veglia, G., Porcelli, F., Prantner, A.M., and Opella, S.J. (2002). Selectivity in heavy metal binding to peptides and proteins. Biopolymers 64, 189-197.
25. Dudev, M., Wang, J., Dudev, T., and Lim, C. (2006). Factors Governing the Metal Coordination Number in Metal Complexes From Cambridge Structure Database Analyses J. Phys. Chem. B 110, 1889-1895.
26. Dudev, T., and Lim, C. (2000a). Metal binding in proteins: The effect of the dielectric medium. J. Phys. Chem. B 104, 3692-3694.
27. Dudev, T., and Lim, C. (2000b). Tetrahedral vs. octahedral Zn2+ complexes with ligands of biological interest: a DFT/CDM study. J. Am. Chem. Soc. 122, 11146-11153.
28. Dudev, T., and Lim, C. (2003a). Metal Binding and Selectivity in Zn Proteins. J. Chin. Chem. Soc. 50, 1093-1102.
29. Dudev, T., and Lim, C. (2003b). Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773-787.
30. Dudev, T., and Lim, C. (2010). Factors controlling the mechanism of NAD+ non-redox reactions. J. Am. Chem. Soc. 132.
31. Eklund, H., and Branden, C.I. (1987). Crystal structure, coenzyme conformations, and protein interactions, In Pyridine nucleotide coenzymes, Dolphin DNY, ed. (New York: Wiley), pp. 51-98.
32. Farmery, M., Macao, B., Larsson, T., and Samuelsson, T. (1998). Binding of GTP and GDP induces a significant conformational change in the GTPase domain of Ffh, a bacterial homologue of the SRP 54 kDa subunit. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1385, 61-68.
33. Fernando Díaz, J., Wroblowski, B., Schlitter, J., and Engelborghs, Y. (1997). Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: Calculations with explicit solvent simulations and comparison with calculations in vacuum. Proteins: Structure, Function, and Bioinformatics 28, 434-451.
34. Fieldhouse, R.J., and Merrill, A.R. (2008). Needle in the haystack: structure-based toxin discovery. Trends Biochem. Sci. 33, 546-556.
35. Fields, R.D., and Burnstock, G. (2006). Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7, 423-436.
36. Fischer, J.D., Holliday, G.L., Rahman, S.A., and Thornton, J.M. (2010a). The Structures and Physicochemical Properties of Organic Cofactors in Biocatalysis. Journal of Molecular Biology 403, 803-824.
37. Fischer, J.D., Holliday, G.L., and Thornton, J.M. (2010b). The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26, 2496-2497.
38. Frausto da Silva, J.J.R., and Williams, R.J.P. (1991). The Biological Chemistry of the Elements (Oxford: Oxford university press).
39. Fredholm, B.B. (2010). Adenosine receptors as drug targets. Experimental Cell Research 316, 1284-1288.
40. French, J.B., Cen, Y., and Sauve, A.A. (2008). Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 47, 10227-10239.
41. Gaszner, B., Nyitrai, M., Hartvig, N., Koszegi, T., Somogyi, B., and Belagyi, J. (1999). Replacement of ATP with ADP Affects the Dynamic and Conformational Properties of Actin Monomer‚ Biochemistry 38, 12885-12892.
42. Glendening, E.D., and Feller, D. (1996). J. Phys. Chem. 100, 4790.
43. Grau, U.M. (1982). Structural interactions with enzymes. In The pyridine nucleotide enzymes, J. Everse, B. Anderson, and K.S. You, eds. (New York: Academic Press), pp. 135-187.
44. Gunasekaran, K., and Nussinov, R. (2007). How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. J. Mol. Biol. 365, 257-273.
45. Hardie, D.G., and Hawley, S.A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23, 1112-1119.
46. Harding, M.M. (1999). The geometry of metal-ligand interactions relevant to proteins. Acta Cryst. D55, 1432-1443.
47. Harding, M.M. (2000). . Acta Cryst. D56, 857-867.
48. Harding, M.M. (2001). The geometry of metal-ligand interactions in proteins. Acta Cryst. D57, 401-411.
49. Harding, M.M. (2006). Small revision to predicted distances around metal sites in proteins. Acta Crystallogr. D62, 678-682.
50. Hartwig, A. (2001). Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antiox. redox signaling 3, 625-634.
51. Herbert, J.M., and Savi, P. (2003). P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin. Vasc Med. 3, 113-122.
52. Hollopeter, G., Jantzen, H.-M., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R.-B., Nurden, P., Nurden, A., Julius, D., and Conley, P.B. (2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409, 202-207.
53. Huheey, J.E., Keiter, E.A., and Keiter, R.L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition edn (New York, U.S.A.: Harper Collins).
54. Ihaka, R., and Gentleman, R. (1996). R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5.
55. Jacobson, K.A., and Gao, Z.-G. (2006). Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5, 247-264.
56. Jacobson, M.K., and Jacobson, E.L. (1989). ADP-ribose transfer reactions. Mechanisms and biological significance (New York: Springer-Verlag).
57. Janin, J., and Wodak, S.J. (1983). Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol 42, 21-78.
58. Jernigan, R., Raghunathan, G., and Bahar, I. (1994). Characterization of interactions and metal ion binding sites in proteins. Curr. Opin. Struct. Biol. 4, 256-263.
59. Jorgensen, R., Wang, Y., Visschedyk, D., and Merrill, A.R. (2008). The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Reports 9, 802-809.
60. Jurnak, F., Heffron, S., Schick, B., and Delaria, K. (1990). Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1050, 209-214.
61. Khan, J.A., Forouhar, F., Tao, X., and Tong, L. (2007). Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 11, 695-705.
62. Kirkland, J.B. (2010). Poly ADP-ribose polymerase-1 and health. Exp. Biol. Med. 235, 561-568.
63. Knowles, J.R. (1980). Enzyme-Catalyzed Phosphoryl Transfer Reactions. Annual Review of Biochemistry 49, 877-919.
64. Koike, R., Amemiya, T., Ota, M., and Kidera, A. (2008). Protein structural change upon ligand binding correlates with enzymatic reaction mechanism. J. Mol. Biol. 379, 397-401.
65. Lee, Y.-M., Babu, C.S., Chen, Y.C., Milcic, M., Qu, Y., and Lim, C. (2010). Conserved Structural Motif for Recognizing Nicotinamide Adenine Dinucleotide in Poly(ADP-ribose) Polymerases and ADP-Ribosylating Toxins: Implications for Structure-Based Drug Design. Journal of Medicinal Chemistry 53, 4038-4049.
66. Lee, Y.-M., and Lim, C. (2008). Physical Basis Underlying Structural and Catalytic Zn−binding Sites in Proteins. J. Mol. Biol. 379, 545-553.
67. Li, M., Dyda, F., Benhar, I., Pastan, I., and Davies, D.R. (1996). Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc. Natl. Acad. Sci. USA 93, 6902-6906.
68. Mardia, K.V., Jupp, P. (2000). Directional Statistics, 2nd edition edn (John Wiley and Sons Ltd.).
69. Martin, A., and Orpen, A.G. (1996). Structural Systematics. 6.1 Apparent Flexibility of Metal Complexes in Crystals J. Am. Chem. Soc. 118, 1464-1470.
70. Matzapetakis, M., Farrer, B.T., Weng, T.-C., Hemmingsen, L., Penner-Hahn, J.E., and Pecoraro, V.L. (2002). Comparison of the binding of cadmium(II), mercury(II) and arsenic(III) to the de novo designed peptides TRI L12C and TRI L16C. J. Am. Chem. Soc. 124, 8042-8054.
71. Moodie, S.L., and Thornton, J.M. (1993). A study into the effects of protein binding on nucleotide conformation. Nucleic Acids Res 21, 1369-1380.
72. Murugappan, S., and Kunapuli, S.P. (2006). The role of ADP receptors in platelet function Front. Biosci. 11, 1977-1986.
73. Nobeli, I., Laskowski, R.A., Valdar, W.S.J., and Thornton, J.M. (2001). On the molecular discrimination between adenine and guanine by proteins. Nucleic Acids Research 29, 4294-4309.
74. Ohtaki, H., and Radnai, T. (1993). Structure and dynamics of hydrated ions. Chem Rev 93, 1157-1204.
75. Oriana (2009). Oriana - Circular Statistics for Windows. (Pentraeth, Wales, U.K., Kovach Computer Services).
76. Orpen, A.G., Brammer, L., Allen, F.H., Kennard, O., Watson, D.G., and Taylor, R. (1989). Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J. Chem. Soc., Dalton Trans., S1-S83.
77. Pauling, L. (1929). The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010-1026.
78. Pearl, F., Todd, A., Sillitoe, I., Dibley, M., Redfern, O., Lewis, T., Bennett, C., Marsden, R., Grant, A., Lee, D., et al. (2005). The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33, D247-251.
79. Pollak, N., Dolle, C., and Ziegler, M. (2007). The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402, 205-218.
80. Popoff, M.R. (2005). Bacterial exotoxins. Contrib Microbiol 12, 28-54.
81. Predki, P.F., and Sarkar, B. (1992). Effect of replacement of "Zinc finger" zinc in estrogen receptor DNA interactions. J. Biol. Chem. 267, 5842-5846.
82. Rao, S.T., and Rossmann, M.G. (1973). Comparison of super-secondary structures in proteins. J. Mol. Biol. 76, 241-256.
83. Rey, M., Man, P., Clémençon, B., Trézéguet, V.r., Brandolin, G.r., Forest, E., and Pelosi, L. (2010). Conformational Dynamics of the Bovine Mitochondrial ADP/ATP Carrier Isoform 1 Revealed by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry. Journal of Biological Chemistry 285, 34981-34990.
84. Richens, D.T. (1997). The Chemistry of Aqua Ions (New York: John Wiley & Sons).
85. Rossmann, M.G., Liljas, A., Branden, C.I., and Banaszak, L.T. (1975). Evolutionary and structural relationships among dehydrogenases. The Enzymes 11, 61-102.
86. Rulisek, L., and Vondrasek, J. (1998). Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) in metalloproteins. J. Inorg. Biochem. 71, 115-127.
87. Sauve, A.A., Wolberger, C., Schramm, V.L., and Boeke, J.D. (2006). The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435-465.
88. Scheffzek, K., and Ahmadian, M. (2005). GTPase activating proteins: structural and functional insights 18 years after discovery. Cellular and Molecular Life Sciences 62, 3014-3038.
89. See, R.F., Kruse, R.A., and Strub, W.M. (1998). Metal-ligand bond distances in first-row transition metal coordination compounds: Coordination number, oxydation state, and specific ligand effects. Inorg. Chem. 37, 5369-5375.
90. Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751-767.
91. Sigel, H. (1974). Metal ions in biological systems (New York: Marcel Dekker).
92. Smith, P.E., and Tanner, J.J. (1999). Molecular dynamics simulations of NAD+ in solution. J. Am. Chem. Soc. 121, 8637-8644.
93. Smith, P.E., and Tanner, J.J. (2000). Conformations of nicotinamide adenine dinucleotide NAD(+) in various environments. J. Molec. Recognit. 13, 27-34.
94. Spezia, R., Tournois, G., Cartailler, T., Tortajada, J., and Jeanvoine, Y. (2006). Co2+ binding cysteine and selenocysteine: a DFT study. J. Phys. Chem. A 110, 9727-9735.
95. Stanfield, R.L., and Wilson, I.A. (1994). Antigen-induced conformational changes in antibodies: a problem for structural prediction and design. Trends Biotechnol 12, 275-279.
96. Stockwell, G.R., and Thornton, J.M. (2006). Conformational diversity of ligands bound to proteins. J. Mol. Biol. 356, 928-944.
97. Tarnus, C., Muller, H.M., and Schuber, F. (1988). Chemical evidence in favor of a stabilized oxocarbenium-ion intermediate in the NAD+ glycohydrolase-catalyzed reactions. Bioorg. Chem. 16, 38-51.
98. Tomar, S.K., Dhimole, N., Chatterjee, M., and Prakash, B. (2009). Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Research 37, 2359-2370.
99. Tornroth-Horsefield, S., and Neutze, R. (2008). Opening and closing the metabolite gate. Proceedings of the National Academy of Sciences 105, 19565-19566.
100. Tulub, A., and Stefanov, V. (2008). New horizons of adenosinetriphosphate energetics arising from interaction with magnesium cofactor. European Biophysics Journal 37, 1309-1316.
101. Tunell, I., and Lim, C. (2006). Factors Governing the Metal Coordination Number in Group IA and IIA Metal Hydrates. Inorg. Chem. 45, 4811−4819.
102. Vinogradov, A.D. (2008). NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1777, 729-734.
103. Watanabe, M., Kono, T., Matsushima-Hibiya, Y., Kanazawa, T., Nishisaka, N., Kishimoto, T., Koyama, K., Sugimura, T., and Wakabayashi, K. (1999). Molecular cloning of an apoptosis-inducing protein, pierisin, from cabbage butterfly: Possible involvement of ADP-ribosylation in its activity. Proceedings of the National Academy of Sciences of the United States of America 96, 10608-10613.
104. Wilkinson, G., Gillard, R.D., and McCleverty, J.A. (1987). Comprehensive coordination chemistry (London: Pergamon).
105. Yamaguchi, A., Iida, K., Matsui, N., Tomoda, S., Yura, K., and Go, M. (2004). Het-PDB Navi.: A Database for Protein-Small Molecule Interactions. J Biochem 135, 79-84.