研究生: |
張寶文 Bao-wen Chang |
---|---|
論文名稱: |
微型探針與微機電元件之整合與應用 Integration of Micro Probes and MEMS Components and Its Applications |
指導教授: |
方維倫
Weileun Fang 焦傳金 Chuan-Chin Chiao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 微探針 、微電極陣列 、微力感測器 |
外文關鍵詞: | micro-probe, multielectrode array, micro-force sensor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討微探針整合其他微機電元件之製作與其應用。文中發展兩種微探針之製作,包含整合導線且具有適當絕緣之微電極陣列,以及整合平板與彈簧之微力感測器元件結構,以闡述微機電製程製作微探針的多樣性。在整合導線方面,該元件可供感測生物電訊號之用,並有整合前級放大器,降低訊號傳遞路徑,以減少雜訊耦合,因此可提高感生物電訊號之解析度。另一方面,利用簡單的製程將探針整合於運動平板之上,免去需透過組裝整合之不便,且其扭轉剛體結構設計,除了可做微力感測器之載具外,亦可直接驅動之供微調控探針平台之用。上述兩個微探針整合型元件在製造上,都分別導入局部氧化的機制,除提供微電極陣列的電性上之絕緣外,亦保護了微力感測器之微探針的尖銳度。
The fabrications and applications of micro probes integrated with other MEMS components are investgated in this study. Two typical cases in microprobe, multielectrode array (MEA) and micro-force sensor, have been applied for illustrating the variety of fabricating MEMS micro-probes. The multielectrode array with signal lines can be utilized for sensing bio-information. For enhancing recording sensitivity, the potential of integrating the pre-amplifier enables to decrease the distance between interconnection passway. On the other hand, a simple fabrication process is achieved for the proposed micro-force sensor with movable plate and torsional spring. The proposed processes in these devices have their common characteristic in local oxidation for providing the electrical isolation in multielectrode array and improving the sharpness of the microprobe on the micro-force sensor.
[1] Y. Gianchandani and K. Najafi, “A bulk silicon dissolved wafer process for microelectromechanical devices,” Journal of Microelectromechnicalg System, 1, pp.77-85, 1992.
[2] C. G. Keller and R. T. Howe, “HexSil tweezers for teleoperated micro-assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77.
[3] F. Ayazi and K. Najafi, “High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS Technology,” Journal of Microelectromechnical System, 9, pp. 288-294, 2000.
[4] R. Toda, K. Minami, and M. Esashi, “Thin beam Bulk Micromachining based on RIE and Xenon difluoride silicon etching”, Sensors and Actuators A, 66 , pp.268-217, 1998
[5] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical Structures”, Sensors and Actuators A, 40, pp.210-213, 1994.
[6] MCNC Mumps Process,http://www.memsrus.com/CIMSmain2ie.html
[7] SUMMiT Process,http://www.sandia.gov/mstc/index.html
[8] Bosch Process,http://www.europractice.bosch.com/en/start/index.htm
[9] T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda , “ Development of bio-MEMS devices for single cell expression analysis,” Conference of Microprocesses and Nanotechnology, Shimane , Japan, Oct., 2001, pp 190 -191.
[10] O. Bruckman, G. Jullien, M. Ahmadi, and W. Miller, “ A MEMS DNA replicator and sample manipulator,” Proceedings of Circuits and Systems, Lansing, MI, Aug., 2000, pp 232–235.
[11] T. Kikuchi, T. Ujiie, T. Ichiki, and Y. Horiike, “Fabrication of quartz micro-capillary electrophoresis chips for health care devices,” Conferences of Microprocesses and Nanotechnology, Yokohama , Japan, July, 2001, pp 178-179.
[12]A. Branner and R. A. Normann, “A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats,” Brain Research Belletin, 51-4, pp293-306, 2000.
[13]S. Henry, D.V. McAllister, M. G. Allen, and M.R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” IEEE The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, Jan. 1998, pp494 - 498
[14] K. D. Jandt, “Atomic force microscopy of biomaterials surfaces and interface,” Surface Science, 491,pp303-332, 2000.
[15] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dig, B. Gotsmann, W. Herle, M. A. Lantz, H. E. Rothuizen, R. Stutz and G. Binnig, “The "Millipede"-nanotechnology entering data storage,” IEEE Transactions on Nanotechnology, 1-1, pp 39-55, 2002.
[16] M. Shikida, M. Odagaki, N. Todoroki, M. Ando, Y. lshihara, T. Ando, and K. Sato, “ Non-photolithographic pattern transfer for fabricating arrayed 3-D microstructures by chemical anisotropic etching,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 562 –565.
[17] T. Kawano, Y. Kato, R. Tani, H. Ishino, H. Takao, K. Sawada and M. Ishida, “Neuron size Si probe array fabricated on integrated circuits for multichannel Electrode,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems(Transducer’03), Boston, Jun., 2003, pp1679-1682.
[18] K. Oka, S. Aoyagi, Y. Isono, G. Hashiguchi ,and H. Fujita, “ Fabrication of a micro needle for a trace blood test,” The 11th International Conference on Solid-State Sensors and Actuators(Transducer’01), Munich ,Germany, June, 2001, pp412-415
[19] M. D. Gingerich, J. F. Hetke, D. J. Anderson, and K. D. Wise, “A 256-site 3D CMOS microelectrode array for multipoint stimulation and recording in central nervous system,” The 11th International Conference on Solid-State Sensors and Actuators(Transducer’01), Munich ,Germany, June, 2001, pp416-419
[20] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined Electrodes for Retinal Prostheses,” IEEE-EMBS Special Topic Conference On Microtechnologies In The Medicine & Biology, Madison, Wisconsin, May, 2002, pp 76-79.
[21] P. Griss, and G. Stemme,“ Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan., 2002,.pp 467 –470.
[22]E. V. Mukerjee, R. R. Issseroff, S. D. Collins and R. L. Smith, “Microneedle array with integrated microchannels for transdermal Sample Extraction and in situ Analysis,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems (Transducer’03), Boston, Jun., 2003, pp1439-1441
[23] J. K. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, “A multichannel neural probe for selective chemical delivery at cellular level,” IEEE Transactions on Biomedical Engineering, 44, pp760-769,1997.
[24] K. C. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, “Implantable multichannel electrode array based on SOI technology,” Journal of Microelectromechanical Systems, 12-2, pp179-184, Apr., 2003.
[25] M. Meister, L. Lagnado, and D. A. Baylor, “Concerted signaling by retinal ganglion cells,” Science, 270, pp 1207-1210, 1995.
[26] I. H. Brivanlou, D. K. Warland, and M. Meister, “Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998.
[27] S. H. DeVries,“Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiol, 81, pp 908-920, 1999.
[28] C. Xu, W. Lemon, and C. Liu,” Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, 96, pp 78–85, 2002.
[29] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array,” IEEE Transactions On Biomedical Engineering, 38, pp 758-768, 1991.
[30] K. E. Jones, P. K. Compbell, and R. A. Normann, “Interelectrode isolation in a penetrating intracortical electrode array,” IEEE Engineering in Medicine and Biology Society, Nov, 1990, pp 496-497.
[31] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, “A neural interface for a cortical vision eprosthesis ,” Vision Research, 39, pp 2577-2587, 1999.
[32] R. A. Normann, P. K. Campbell, and K. E. Jones, “A silicon based electrode array for intracortical stimulation: structural and electrical properties,” IEEE Engineering in medicine & biology society, Nov, 1989, pp 939-940.
[33] M. O, Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud , “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, 114, pp 135 - 148 .2002.
[34] Ayanda Biosystems, http://www.ayanda-biosys.com/lts.html
[35] P. Thiebaud, C. Beuret, N.F. de Rooij, and M. Koudelka-Hep, “Microfabrication of Pt-tip microelectrodes,” Sensors and Actuators B, 70, pp 51-56, 2000.
[36] P. Thiebaud, C. Beuret, M. Koudelka-Hep, M. Bove, S. Martinoia, M. Grattarola, H. Jahnsen, R. Rebaudo, M. Balestrino, J. Zimmer, and Y. Dupont, “An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices,” Biosensors & Bioelectronics, 14, pp 61-65, 1999.
[37] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G Stemme, “Micromachined electrodes for biopotential measurements,” Journal Of Microelectromechanical System, 10, pp 10-16, 2001.
[38] Q. Bai, K.D. Wise, and D. J. Anderson, “A high-yield microassembly Structure For three-dimensional microelectrode arrays,” IEEE Transactions On Biomedical Engineering, 47, pp 281-289, 2000.
[39] Q. Bai, and K. D. Wise, “Single-unit neural recording with active microelectrode arrays,” IEEE Transactions On Biomedical Engineering, 48, pp 911-920, 2001.
[40] A. C. Hoogerwerf, and K. D. Wise, “A three-dimensional microelectrode array for chronic neural recording,” IEEE Transactions on Biomedical Engineering, 41, pp 1136-1146, 1994.
[41] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, “ 3D flexible multichannel probe array,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 376 –370.
[42] T. Suzuki, K. Mabuchi, and S. Takeuchi, “A 3D flexible parylene probe array for multichannel neural recording,” First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March, 2003, pp 154-156
[43] G. Binning, C. F. Quate, and Ch. Gerber, “Atom force microscope,” Physical Review Letters, 56, pp930-933, 1986
[44] C. Serre, A. P. Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beambending measurements with an atomic force microscope,” Sensors and Actuators A, 74, pp.134-138, 1999.
[45]K.E. Petersen and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979.
[46]L.M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of mechanical properties of silicon microresonators,” Sensors and Actuators A, 29, pp. 79-84, 1991.
[47]L. Kiesewetter, J. M. Zhang, D. Houdeau and A. Steckenborn, “Determining of Young’s moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp. 153-159, 1992.
[48]W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, no. 3, pp. 193-199, 1997.
[49]K. Najafi and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin films,” Proceeding of the IEEE MEMS, Salk Lake City, UT, Feb., 1989,.pp96-97.
[50] S. Sundarajan, and B. Bhushan,“Development of AFM-based techniques to measure mechanical properties of nanoscale structures,” Sensor and Actuators A, 101, pp338-351, 2002
[51] E. Rädlen, and G. H. Frischat, “Atomic force microscopy as a tool to correlate nanostructure to properties of glasses,” Journal of Non-crystalline Solids, 222, pp69-82, 1997
[52] M. F. Tabet, and F. K. Urban, “Comparison of atomic force microscope and Rutherford backscattering spectrometry data of nanometre size zinc islands,” Thin Solid Films, 290-291, pp312-316, 1996
[53] G. L. Miller, E. R. Wagner, and T. Sleater, “A rocking beam electrostatic balance for the measurement of small forces,” Review of Scientific Instrument, 62, pp.705-709, 1991
[54] J. E. Griffith, and G. L. Miller, “ Force-sensing system, including a magnetically mounted rocking element,” US Patent 5307693,1994
[55] S. A. Joyce, and J. E. Houston, “A new force incorporating force-feedback control for interfacial force microscopy”, Review of Scientific Instrument, 62, pp.710-715, 1991
[56]N. Kato, I. Suzuki, H. Kituta, and K. Iwata, “Force-blancing force sensor with an optical lever”, Review of Scientific Instrument, 66, pp.5532-5536, 1995
[57] K.Chang, N. C. Shie, H.M. Tai, and T. Chen, “Application of optic-fiber interferometers on micro force-balancing force sensor”, 7th Nano Engineering and Micro System Technology Workshop, Taipei, Taiwan, Nov., 2003
[58]郭子熒, “三維微電極陣列於神經電信號之應用,” 國立清華大學動力機械系碩士論文, 2003.
[59] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, 6, pp.320-329, 1996.
[60] P. Jaecklin, C. Linder, and N. F. de Rooij, “Line-addressable torsional micromirrors for light modulator arrays,” Sensors and Actuators A, 41-42, pp 324-329, 1994.
[61] O.Tsuboi, Y. Mizuno, N. Koma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki and F. Yamagishi “A rotational comb-driven micromirrors with a large deflection angle and low drive voltage,” IEEE The Fifteenth Annual International Conference on Micro Electro Mechanical Systems, Las Vegas, Nevada, USA, Jan. 20-24, 2002, pp532-535
[62] J. A. Thornton and D. W. Hoffman, “ Stress-related Effects in Thin Film,” Thin Solid Films, 171, pp 5-31, 1989
[63] http://www.mvis.com/