研究生: |
周志嘉 Chou, Chih-Chia. |
---|---|
論文名稱: |
非完美通道估測條件下之基於最大化訊號干擾比下限的強健式干擾對齊技術 Robust Interference Alignment Based on Maximization of an SIR Lower Bound under Imperfect Channel Estimation |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
陳永芳
黃昱智 吳東興 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 干擾對齊 、非完美通道估測 、迭代設計 、多輸入多輸出 、多細胞干擾通道 、訊號干擾比 |
外文關鍵詞: | interference alignment, imperfect channel estimation, iterative designs, multiple-input multiple-output, multi-cell interference channels, signal-to-interference (SIR) ratio |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
干擾對齊是一項有潛力應用於未來無線通訊網路之基地台間干擾消除的技術,不過標準的干擾對齊方法需要使用完美的通道資訊,因此在非完美通道資訊的情況下,其效能表現會明顯衰退。在本論文中,我們考量通道誤差並針對包含多對傳送/接收裝置之多輸入多輸出干擾通道提出一個具有強健性的迭代式干擾對齊演算法,其中每一次迭代過程的預編碼器與解碼器設計皆以最大化訊號干擾比 (signal-to-interference ratio ; SIR) 的下限 (lower bound) 為準則;預編碼器設計之SIR定義為「對應接收端所欲接收之訊號能量與傳送訊號洩漏至所有非對應接收端之總干擾訊號能量的比值」,而解碼器設計之SIR定義為「所欲接收之訊號能量 (來自對應傳送端) 與洩漏自所有非對應傳送端之總干擾訊號能量的比值」。電腦模擬結果顯示,我們所提出之迭代式干擾對齊方法比基於最小均方誤差準則之現有相關作法具有相當的系統效能與較低的運算複雜度。
Interference alignment (IA) for multiuser multiple-input multiple-output (MIMO) interference channels is a promising technique for interference elimination in future wireless cellular networks. Since the standard IA methods require perfect channel state information (CSI), significant performance degradation would occur under imperfect CSI. In this thesis, we propose a robust iterative IA scheme for MIMO interference channels with multiple transmitter-receiver pairs under an assumption that the channel error is independent and identically complex Gaussian distributed with bounded expected norm. At each iteration, the precoder and decoder designs are updated alternately to maximize a lower bound of the signal-to-interference ratio (SIR); the SIR for the precoder design is defined as the ratio of the desired signal power at the intended receiver to the total interference power leaking from the same transmitted signal to all unintended receivers, while that for the decoder design is defined as the ratio of the desired received signal power from the intended transmitter to the total interference power leaking from all unintended transmitters. The proposed iterative IA approach achieves comparable performance with less computational complexity in comparison with a previous related method based on the minimum mean-squared error criterion for data detection.
[1] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, “Interference management in OFDMA femtocell networks: Issues and approaches,” IEEE Wireless Commun., vol. 19, no. 3, pp. 86–95, Jun. 2012.
[2] E. Hossain, M. Rasti, H. Tabassum and A. Abdelnasser, “Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective,” IEEE Wireless Commun., vol. 21, no. 3, pp. 118–127, Jun. 2014.
[3] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management in femtocells,” IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 293–311, Feb. 2012.
[4] W. Nam, D. Bai, J. Lee, and I. Kang, “Advanced interference management for 5G cellular networks,” IEEE Commun. Mag., vol. 52, no. 5, pp. 52–60, May 2014.
[5] D. C. Moreira, Y. C. B. Silva, K. Ardah, W. C. Freitas, and F. R. P. Cavalcanti, “Convergence analysis of iterative interference alignment algorithms,” in Proc. IEEE Int. Telecommun. Symp. (ITS), Sao Paulo, Brazil, Aug. 2014.
[6] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425–3441, Aug. 2008.
[7] S. W. Peters and R. W. Heath, Jr., “Interference alignment via alternating minimization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 2445–2448.
[8] K. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed numerical approach to interference alignment and applications to wireless interference networks,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309–3322, Jun. 2011.
[9] S. W. Peters and R. W. Heath, Jr., “Cooperative algorithms for MIMO interference channels,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 206–218, Jan. 2011.
[10] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Minimum mean squared error interference alignment,” in Proc. IEEE Asilomar Conf. Signals, Syst., Comput. (ACSSC), Pacific Grove, California, US, Nov. 2009, pp. 1106–1110.
[11] L. Qingzhong, G. Xuemai, and L. Hanqing, “MMSE interference alignment with imperfect CSI,” in Proc. IEEE Instrum., Meas., Comput., Commun. Control (IMCCC), Harbin, China, Dec. 2012, pp. 197–201.
[12] H. Du, T. Ratnarajah, M. Sellathurai, and C. Papadias, “A robust interference alignment technique for the MIMO interference channel with uncertainties,” in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary, Jun. 2013, pp. 154–158.
[13] H. Shen, B. Li, M. Tao and Y. Luo, “The new interference alignment scheme for the MIMO interference channel,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Sydney, Australia, Apr. 2010.
[14] M. J. Kim, H. H. Lee, and Y. C. Ko, “Robust transceiver design based on joint signal and interference alignment for MIMO interference channels with imperfect channel knowledge,” IEEE Commun. Lett., vol. 18, no. 11, pp. 2035–2038, Nov. 2014.
[15] C.-C. Mai, “Iterative interference alignment based on SIR maximization under imperfect channel estimation,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Feb. 2016.
[16] R. Tresch and M. Guillaud, “Cellular interference alignment with imperfect channel knowledge,” in Proc. IEEE Int. Conf. Commun. Workshops (ICCW), Dresden, Germany, Jun. 2009.
[17] S. Bazzi, G. Dietl, and W. Utschick, “Interference alignment with imperfect channel state information at the transmitter,” in Proc. IEEE Int. Symp. Wireless Commun. Syst. (ISWCS), Paris, France, Aug. 2012, pp. 561–565.
[18] D. C. Lay, S. R. Lay, and J. J. McDonald, Linear Algebra and Its Applications, 5th ed. Washington, US: Pearson Press, 2014.
[19] H. Lütkepohl, Handbook of Matrices. Berlin, Germany: Wiley Press, 1997.
[20] H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang, “Trace ratio vs. ratio trace for dimensionality reduction,” in Proc. IEEE Comput. Vis. and Pattern Recognit. (CVPR), Minneapolis, Minnesota, US, Jun. 2007.
[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, Maryland, US: Johns Hopkins Univ. Press, 1996.
[22] C. M. Yetis, T. Gou, S. A. Jafar, and A. H. Kayran, “On feasibility of interference alignment in MIMO interference networks,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4771–4782, Sep. 2010.
[23] S. M. Razavi and T. Ratnarajah, “Performance analysis of interference alignment under CSI mismatch,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4740–4748, Nov. 2014.
[24] N. Zhao, F. R. Yu, M. Jin, Q. Yan, and V. C. M. Leung, “Interference alignment and its applications: A survey, research issues, and challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1779–1803, Mar. 2016.
[25] A. G. Helmy, A. Gomaa, A. R. Hedayat, and N. Al-Dhahir, “Multi-stream sum-rate-maximizing interference alignment under sparsity constraints,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Atlanta, Georgia, US, Dec. 2013, pp. 4002–4007.