研究生: |
敏 如 Singh, Meenu |
---|---|
論文名稱: |
根基於濕式製程製作單一發光層之生理友善高光質有機發光二極體 Human-Friendly High Light-Quality OLEDs with a Wet-Processed Single Emissive Layer |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
蔡豐羽
Tsai, Feng-Yu 李君浩 Lee, Jiun-Haw 薛景中 Shyue, Jing-Jong 魏茂國 Wei, Mao-Kuo 蔡永誠 Tsai, York |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 濕式製程有機發二極體 |
外文關鍵詞: | Wet-process OLEDs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有机发光二极管(OLED)是全球固态照明市场上的新兴技术。作为一种漫射光源,OLED是一种通用照明的有利照明手段。到目前为止,已经探索了许多方法来制造高质量的OLED。通过湿法实现高效率的高效率,是非常具有挑战性的。尽管湿法在大面积和印刷可行性方面被认为更加优越。重要的是,只有高质量的光源才不足以用于实际使用,因为光的色温对人体健康,环境和生态系统也有深远的影响。可以采用低色温(<2000 K)的蓝色无害光来抑制高色温白光的健康问题。然而,由于不能包含有害的紫色和深蓝色发射,同时实现具有非常高的光质量的低色温橙白发射是非常具有挑战性的。本论文所展示的工作展现了具有非常高显色指数(CRI)和光谱相似指数(SRI)的无蓝色,低色温OLED,其具有单个发射层旋涂四个黑体辐射互补发射体即天蓝,绿,黄,深红。已经利用具体的设计策略来制造一系列多层湿法处理的OLED,其中单个OLED可以提供具有非常高的光质量指数(即,CRI和SRI大于90)的稳定的色度。为了评估照明对人造光的影响,生理学和眼睛,使用褪黑激素抑制灵敏度(MSS)函数和最大允许视网膜暴露极限“t”来表征OLED的发射光谱。所有经过湿处理的OLED都表现出健康的照明,褪黑素抑制更少,视网膜暴露时间更长,色温更低,光质量也非常高。所提出的工作包括人类健康对光源设计过程的考虑,并且为高效光源提供容易应用的高性价比制造工艺。
Organic light emitting diode (OLED) is an emerging technology in the global solid-state lighting market. Being a diffuse light source, OLED is a favorable lighting measure for general illumination. So far, many approaches have been explored to fabricate high-quality OLEDs. Achieving high light-quality with high efficiency via wet-process is quite challenging. Though, wet-process is considered more superior in enabling large area-size and printing feasibility. Importantly, only high-quality is not sufficient to justify any lighting source for practical use because color temperature of light also has a profound effect on human health, environment and ecosystem. A low color temperature (< 2,000 K), blue-hazard free light can be adopted to inhibit health issues from high color temperature white light. However, it is highly challenging to realize a low color temperature orange-white emission with a very-high light-quality at the same time since the hazardous violet and deep-blue emission cannot be included. The work presented in this thesis demonstrates blue-hazard free, low color temperature OLEDs with very-high color rendering index (CRI) and spectrum resemblance index (SRI), that with a single emissive layer spin-coated with four blackbody-radiation complementary emitters, namely sky-blue, green, yellow, and deep-red. Specific design tactics have been utilized to fabricate a series of multilayered wet-processed OLEDs, where a single OLED can provide stable chromaticity with very-high light-quality indices i.e. CRI and SRI greater than 90. To evaluate the impact of lighting on human-physiology and -eye, the emitted spectrum of the OLEDs is characterized by using melatonin suppression sensitivity (MSS) function and maximum permissible retina exposure limit “t”. All the wet-processed OLEDs exhibited a healthy illumination with less melatonin-suppression, longer retina exposure time, low color temperature, and very-high light-quality. The presented work includes human health consideration to the designing process of light source and provide an easy to apply cost-effective fabrication process for an efficient light source.
1. W. Helfrich, W.G. Schneidere, “Recombination Radiation in Anthracene Crystals,” Phys. Rev. Lett. 14, 229, (1965).
2. C.W. Tang, S.A. VanSlyke, C.H. Chen, “Electroluminescence of Doped Organic Thin Films,” J. Appl. Phys. 65, 3610, (1989).
3. C. Adachi, T. Tsutsui, S. Saito, “Blue Light‐Emitting Organic Electroluminescent Devices,” Appl. Phys. Lett. 55, 1489, (1989).
4. J. Kido, K. Nagai, Y. Okamoto, T. Skotheim, “Electroluminescence from Polysilane Film Doped with Europium Complex,” Chem. Lett. 20, 1267, (1991).
5. J. Kido, K. Hongawa, K. Okuyama, K. Nagai, “Bright Blue Electroluminescence from Poly (N‐vinylcarbazole),” Appl. Phys. Lett. 63, 2627, (1993).
6. J. Kido, K. Hongawa, K. Okuyama, K. Nagai, “White Light‐Emitting Organic Electroluminescent Devices using The Poly (N‐vinylcarbazole) Emitter Layer Doped with Three Fluorescent Dyes,” Appl. Phys. Lett. 64, 815, (1994).
7. J. Kido, M. Kimura, K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science 3, 267, (1995).
8. L.J. Rothberg, A.J. Lovinger, “Status of and Prospects for Organic Electroluminescence,” J. Mater. Res. 11, 3174, (1996).
9. M.A. Baldo, et al. “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature. 395, 151, (1998).
10. R.C. Kwong, et al. “Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II) Porphyrins,” Chem. Mater. 11, 3709, (1999).
11. S. Reineke, et al. “White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency,” Nature, 459, 234, (2009).
12. http://global.pioneer/en/info/globalnetwork/japan/tohokupioneer/mainbusinesses/oled/
13. http://wwwca.kodak.com/US/en/corp/pressReleases/pr20030520-01.shtml
14. a)https://www.sony.net/SonyInfo/News/Press/200710/07-1001E/
b) https://www.sony.co.jp/SonyInfo/News/Press/201109/11-107/
15. a)https://www.oled-info.com/oled-4k b) http://www.lg.com/us/tvs/lg-OLED77W7P-oled-4k-tv c)https://www.led-professional.com/products/leds_led_modules/lg-chem-launches-new-406x50mm-flexible-oled-light-panel d)LG Chem, "LG Chem Exhibits the World’s Top Performing OLED Light Panels at Light and Building 2014," 1
(http://www.lgchem.com/global/lg-chem-company/informationcenter/press-release/news-detail-623.
16. a)https://www.oled-info.com/oled-wearables-introduction
b)http://www.businesswire.com/news/home/20150609006775/en/Samsung-Display-Introduces-Mirror-Transparent-OLED-Display, c)http://www.dailymail.co.uk/sciencetech/article-4535272/Samsung-shows-world-s-stretchable-display.html
17. D. Nakamura, H. Ikeda, N.Sugisawa, Y. Yanagisawa, S.Eguchi, S. Kawashima, et al. SID Digest 103 (1), (2015).
18. http://www.top-news.top/news-12250914.html
19. https://www.oled-info.com/boe-flexible-foldable-oled-prototypes-chengdu-b7
20. http://www.olednet.com/en/tag/joled/
21. http://en.ctimes.com.tw/DispNews.asp?O=HK1A69QRDQOSAA00NC&FTouchsensor.
22. https://www.oled-info.com/philips-merck-and-audi-developed-3d-oled-prototypesaudi-tt
23. OLED-info, "Konica Minolta break their own record with world's most efficient OLED panel (139 lm/W)," 7 June 2014. (https://www.konicaminolta.jp/about/release/2014/0304_02_01.html)
24. (a) T. Reusch, "OLED for Automobile Applications," DOE SSL R&D Workshop, Raleigh, NC, February 2016. (http://energy.gov/sites/prod/files/2016/02/f29/reusch_application_raleigh2016.pdf.)
(b) OSRAM, "ORBEOS SDW-058+: The Next Step to General Lighting," 2014. http://www.osram-oled.com/oled/en/products/orbeos-sdw-058-plus/index.jsp.
25. http://www.acuitybrands.com/oled/products
26. http://www.darksky.org/
27. DOE SSL Program, "Human Physiological Responses to Light," June 2016.
28. P. Mukish, M. Rosina, P. Boulay, Yole report“OLED for Lighting - Technology, Industry and Market Trends” March 2016.
29. K. Ghaffarzadeh, N. Bardsley, OLED Lighting Opportunities 2017-2027: Forecasts, Technologies, Players, IDTechEx, (http://www.idtechex.com/research/reports/oled-lighting-opportunities-2017-2027-forecasts-technologies-players-000526.asp (2017).
30. DOE SSL Program, "Animal Responses to Light," April 2016.
31. A. Wojtysiak, "The Physiological Impact of Lighting," DOE SSL R&D Workshop, San Francisco, CA, 29, 2015. (http://www.energy.gov/sites/prod/files/2015/02/f19/wojtysiak_physiological_sanfrancisco2015.pdf.
32. G.S Singhal, G. Renger, S.K Sopory, K.D. Irrgang, Govindjee, “Concepts in Photobiology: Photosynthesis and Photomorphogenesis” Springer: New York, USA, (1999).
33. T. Pocok, "Tuning the Spectrum for Plant Growth," DOE SSL Technology Development Workshop, Portland, OR, November 2015. (http://energy.gov/sites/prod/files/2015/11/f27/pocock_keynote_portland2015.pdf.)
34. E. L. Elliot, Ed., Good Lighting and the Illuminating Engineer, Volume 7, Illuminating Engineering Publishing Co., 1912, p. 190.
35. Workrite Ergonomics, "Natural OLED Desk Lamp," 2016. (http://workriteergo.com/natural-oled/.)
36. J.H. Jou, et al. “Sunlight-Style Color-Temperature Tunable Organic Light-Emitting Diode,” Appl. Phys. Lett. 95, 13307, (2009).
37. J.H. Jou, et al. “Plant Growth Absorption Spectrum Mimicking Light Sources,” Materials. 8, 5265, (2015).
38. R. Spivock, "Horticultural Lighting: DOE Emerging Trends," DOE SSL R&D Workshop, San Francisco, CA, 27January 2015.
(http://www.energy.gov/sites/prod/files/2015/02/f19/spivock_horticultural-lighting_sanfrancisco2015.pdf.)
39. J.H Jou, et al. “A Universal, Easy-to-Apply Light-Quality Index Based on Natural Light Spectrum Resemblance,” Appl. Phys. Lett. 104, 203304, (2014).
40. D. Nickerson, “Light Sources and Color Rendering,” J. Opt. Soc. Am. 50, 57, (1960).
41. M.S. Rea, J.P.F. Nova, “Color Rendering: A Tale of Two Metrics,” Color Res. Appl. 33,192, (2008).
42. Method of Measuring and Specifying Colour Rendering Properties of Light Sources. Technical Report publics in CIE Publication No. 13, (1965).
43. Method of Measuring and Specifying Colour Rendering Properties of Light Sources. Technical Report publics in CIE Publication No. 13.3, (1995).
44. V. Adamovich, et al. “High Efficiency Single Dopant White Electrophosphorescent Lighthigh Efficiency Single Dopant White Electrophosphorescent Light Emitting Diodes,” New J. Chem., 26, 1171, (2002).
45. B. W. D'Andrade, R. J. Holmes, Stephen R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16, 1585, (2004).
46. G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, “Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light‐Emitting Diodes,” Adv. Mater. 19, 3672, (2007).
47. J.H. Jou, et al. “High Efficiency Yellow Organic Light Emitting Diodes with A Balanced Carrier Injection Co-Host Structure,” J. Mater. Chem. 21, 18523, (2011).
48. Y.S. Park, et al. “Efficient, Color Stable White Organic Light‐Emitting Diode Based on High Energy Level Yellowish‐Green Dopants,” Adv. Mater. 20, 1957, (2008).
49. X.M.Yu, et al. “A Yellow-Emitting Iridium Complex for Use in Phosphorescent Multiple-Emissive-Layer White Organic Light-Emitting Diodes with High Color Quality and Efficiency,” J. Organomet. Chem. 693, 1518, (2008).
50. D. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, “Highly Efficient Simplified Single-Emitting-Layer Hybrid WOLEDs with Low Roll-off and Good Color Stability through Enhanced Förster Energy Transfer,” ACS Appl. Mater. Interfaces. 7, 28693, (2015).
51. X. Niu, et al. White Polymeric Light-Emitting Diodes with High Color Rendering Index. Appl. Phys. Lett. 89, 213508, (2006).
52. H.B. Wu, et al. Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes,” Adv. Mater. 20, 696, (2008).
53. H. Yang, et al. “High Colour Rendering Index White Organic Light-Emitting Devices With Three Emitting Layers,” Displays. 29 327, (2008).
54. H. Fukagawa, K. Watanabe, S. Tokito, “Efficient White Organic Light Emitting Diodes With Solution Processed and Vacuum Deposited Emitting Layers,” Org. Electron. 10, 798, (2009).
55. L. Wang, et al. “Highly Efficient and Color-Stable Deep-Blue Organic Light-Emitting Diodes Based on a Solution-Processible Dendrimer,” Adv. Mater. 21, 4854, (2009).
56. C.H. Chang et al. “Efficient phosphorescent white OLEDs with high color rendering capability,” Org. Electron. 11, 412, (2010).
57. J.H. Jou et al. “Efficient Very High Color Rendering Index Organic Light-Emitting Diode,” Org. Electron., 12, 865, (2011).
58. F. Zhao, N. Sun, H. Zhang, J. Chen, D. Ma, “Hybrid White Organic Light-Emitting Diodes With a Double Light-Emitting Layer Structure for High Color-Rendering Index,” J. Appl. Lett. 112, 084504, (2012).
59. Y. Li, et al. “Ultra-High General And Special Color Rendering Index White Organic Light-Emitting Device Based on a Deep Red Phosphorescent Dye,” Org. Electron.14 3201, (2013).
60. B. Liu, et al. “Efficient Hybrid White Organic Light-Emitting Diodes with Extremely Long Lifetime: The Effect of N-Type Interlayer,” Sci Rep. 4, 7198, (2014).
61. Z. Wu, et al. “High-Performance Hybrid White Organic Light-Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Roll-Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter,” Adv. Funct. Mater. 26(19), 3306, (2016).
62. M. Zhang, at al. “Efficient, Color-Stable And High Color-Rendering-Index White Organic Light-Emitting Diodes Employing Full Thermally Activated Delayed Fluorescence System,” Org. Electron. 50. 466, (2017).
63. C. Li, et al. “Solution-Processable Thermally Activated Delayed Fluorescence White OLEDs Based on Dual-Emission Polymers with Tunable Emission Colors and Aggregation-Enhanced Emission Properties,” Adv. Optical. Mater. 5, 1700435, (2017).
64. D.B. Judd, “A Flattery Index for Artificial Illuminants,” J. Illum. Eng. Soc. 62, 593, (1967).
65. W.A. Thornton, “A Validation of the Color Preference Index,” J. Illum. Eng. 4, 48, (1974).
66. W.A. Thornton, “Color-Discrimination Index,” J. Opt. Soc. Am. 62, 191, (1972).
67. S.A. Fotios, “The Perception of Light Sources of Different Colour Properties,” PhD thesis. Manchester, UMIST UK: (1997).
68. H. Xu, “Colour Rendering Capacity of Illumination,” J. Illum. Eng. Soc. 13, 270, (1984).
69. H. Xu, “Colour Rendering Capacity and Luminous Efficiency of a Spectrum,” Lighting Res. Technol. 25, 131, (1993).
70. M.R. Pointer, “Measuring Colour Rendering-A New Approach,” Lighting Res. Technol. 18,175, (1986).
71. K. Smet, et al. “Correlation Between Color Quality Metric Predictions and Visual Appreciation of Light Sources,” Opt. Express. 19(9), 8151, (2011).
72. K. Smet, et al. “Memory Colours and Colour Quality Evaluation of Conventional and Solid-State Lamps,” Opt. Express. 18(25), 26229, (2010).
73. Thornton, W.A. “Color-Discrimination Index,” Journal of the Optical Society of America 61 (1971): 1155.
74. J.P.F. Nova, M.S. Rea, “A Two-Metric Proposal to Specify the Color-Rendering Properties of Light Sources for Retail Lighting,” Tenth International Conference of Solid-State Lighting, Proceedings of SPIE, San Diego, CA, 77840V, (2010).
75. W. Davis, Y.Ohno, “Color Quality Scale,” Opt. Eng. 49(3), 033602, (2010).
76. K.Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer, “Color Appearance Rating of Familiar Real Objects,” Color. Res. Appl. 36(3), 192, (2011).
77. Smet, K.A.G., Ryckaert, W.R., Pointer, M.R., Deconinck, G., Hanselaer, P. “Memory Colors and Color Quality Evaluation of Conventional and Solid-State Lamps,” Optics Express 18(25) (2010): 26229–26244.
78. W. Davis, Y. Ohno, “Toward an Improved Color Rendering Metric,” Proceedings of SPIE 5941 (2005): 59411G.
79. J.H. Jou, S.M. Shen, J.H. Wu, S.H. Peng, S.C. Wang, “Sunlight-Style Organic Light-Emitting Diodes,” J. Photonics Energy. 1(1), 011021, (2011).
80. J.L. Schnapf, T.W. Kraft, D.A. Baylor, “Spectral Sensitivity of Human Cone Photoreceptors,” Nature 325, 439, (1987).
81. L.T. Sharpe, A. Stockman, W. Jagla, H. Jägle, “A Luminous Efficiency Function, V*(λ), for Daylight Adaptation,” J. Vision. 5, 948, (2015).
82. G. Wald, “Human Vision and the Spectrum,” Science. 101, 653, (1945).
83. P.K. Kaiser, “Sensation Luminance: A New Name to Distinguish CIE Luminance from Luminance Dependent on an Individual's Spectral Sensitivity,” Vision Res. 28, 455, (1988).
84. Solid-State Lighting Research and Development: Multi-Year Program Plan, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy, Washington, DC, page 52, 2013.
85. Solid-State Lighting Research and Development: Multi-Year Program Plan, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy, Washington, DC, page 66, 2014
86. R.G. Stevens, G.C. Brainard, D.E. Blask, S.W. Lockley, M.E. Motta, “Breast Cancer and Circadian Disruption from Electric Lighting in the Modern World,” CA-Cancer J. Clin. 64, 207, (2014).
87. S.M. Pauley, “Lighting for the Human Circadian Clock: Recent Research Indicates That Lighting has Become a Public Health Issue,” Med. Hypotheses. 63, 588, (2004).
88. P.V. Algvere, J. Marshall, S. Seregard, “Age-Related Maculopathy and the Impact of Blue Light Hazard,” Acta. Ophthalmol. Scand. 84, 4, (2006).
89. A.J. Lewy, T.A. Wehr, F.K. Goodwin, D.A. Newsome, S.P. Markey, “Light Suppresses Melatonin Secretion in Humans,” Science, 210(4475), 1267, (1980).
90. K.J. Navara, R.J. Nelson, “The Dark Side of Light at Night: Physiological, Epidemiological, and Ecological Consequences,” J. Pineal. Res. 43(3), 215, (2007).
91. M.G. Figueiro, J.D. Bullough, A. Bierman, M.S. Rea, “Demonstration of Additivity Failure in Human Circadian Phototransduction,” Neuro. Endocrinol. Lett. 526(5), 493, (2007).
92. E.S. Schernhammer, K. Schulmeister, “Melatonin and Cancer Risk: Does Light at Night Compromise Physiologic Cancer Protection by Lowering Serum Melatonin Levels?,” Br. J. Cancer., 90, 941, (2004).
93. E.S. Schernhammer, et al. “Night-shift work and risk of colorectal cancer in the nurses’ health study,” J. Natl. Cancer Inst. 95(11), 825, (2003).
94. IEA 1International Energy Agency final report on potential health issues on SSL (September 2014).
95. B. Parks, “The IDA Smart Urban Lighting Initiative”, International Dark-Sky Association Annual Report: Nightscape, 92, 2, (2014).
96. L. Monico, et al. “Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 3. Synthesis, Characterization, and Detection of Different Crystal Forms of the Chrome Yellow Pigment,” Anal. Chem. 85(2), 851, (2013).
97. L. Monico, et al. “Degradation Process of Lead Chromate in Paintings by Vincent van Gogh Studied by Means of Spectromicroscopic Methods. 4. Artificial Aging of Model Samples of Co-Precipitates of Lead Chromate and Lead Sulfate,” Anal. Chem. 85(2) 860,(2013).
98. J.H Jou,.; Chen, S.H.; Shen, S.M.; Jou, Y.C.; Lin, C.H.; Peng, S.H.; Hsia, S.P.; Wang, C.W.; Chen, C.C.; Wang, C.C. J. Mater. Chem. 21, 17850, (2011).
99. J. H. Jou, et al. High-Efficiency Low Color Temperature Organic Light Emitting Diodes with Solution-Processed Emissive Layer. Org. Electron., 13, 899, (2012).
100. J.H. Jou, et al. “Organic Light-Emitting Diode-Based Plausibly Physiologically-Friendly Low Color-Temperature Night Light,” Org. Electron. 13, 1349, (2012).
101. J.H. Jou, et al. “Candle Light-Style Organic Light-Emitting Diodes,” Adv. Funct. Mater. 23, 2750, (2013).
102. J.H. Jou, PW. Chen, Y.L. Chen, “OLEDs with Chromaticity Tunable Between Dusk-Hue and Candle-Light,” Org. Electron, 14, 47, (2013).
103. Y. Gong, et al. “AIE-active, Highly Thermally and Morphologically Stable, Mechanochromic and Efficient Solid Emitters for Low Color Temperature OLEDs,” J. Mater. Chem. 2, 7552, (2014).
104. S.H. Ye, et al.,“Solution processed single-emission layer white polymer light-emitting diodes with high color quality and high performance from a poly(N-vinyl)carbazole host,” Phys. Chem. Chem. Phys., 14, 8860, (2015).
105. X. Liu, et al. New Deep-Red Heteroleptic Iridium Complex with 3-Hexylthiophene for Solution-Processed Organic Light-Emitting Diodes Emitting Saturated Red and High CRI White Colors. Org. Electron. 21, 1, (2015).
106. S.H. Ye, et al. Solution Processed Single-Emissive-Layer White Organic Light-Emitting Diodes Based on Fluorene Host: Balanced Consideration for Color Quality and Electroluminescent Efficiency, Org. Electron. 33, 235, (2016).
107. W. Li, “Extremely Low Color-Temperature White Organic Electroluminescence Devices Based on the Control of Exciton Recombination Zone,” Phys. Status. Solidi. A. 213, 2400, (2016).
108. T. Zhang, “A Multi-Zoned White Organic Light-Emitting Diode with High CRI and Low Color Temperature,” Sci. Rep. 6, 20517, (2016).
109. J.H. Jou, et al. “Wet-Process Feasible Candlelight OLED,” J. Mater. Chem. C, 4, 6070, (2016).
110. D.C. Klein, R.Y. Moore, S. M. Reppert, “Suprachiasmatic Nucleus: The Mind’s Clock,” Oxford: Oxford UP.Eds. Oxford University Press, New York, NY, 125, (1991).
111. T.A. Wehr, “The Durations of Human Melatonin Secretion and Sleep Respond to Changes in Daylength (Photoperiod),” J Clin. Endocrinol. Metab. 73,1276, (1991).
112. R.Wever, “The Circadian System of Man: Results of Experiments Under Temporal Isolation,” New York, Springer-Verlag, (1979).
113. J. Aschoff, “Endocrine Rhythms. Edited by: Krieger DTE. New York, Raven, (1979).
114. C.A. Czeisler, E. Weitzman, M.C. Moore-Ede, J.C. Zimmerman, R.S. Knauer, “Human Sleep: Its Duration and Organization Depend on Its Circadian Phase,” Science. 210(4475), 1264, (1980).
115. R.T.W.L. Conroy, J. N. Mills, “Human Circadian Rhythms,” London, Churchill; (1970).
116. R.J. Reiter, “Pineal Melatonin: Cell Biology of Its Synthesis and of Itsphysiological Interactions. Endocr. Rev., 12,151, (1991).
117. R.Y. Moore, “Organization and Function of a Central Nervous System Circadian Oscillator: The Suprachiasmatic Hypothalamic Nucleus,” Fed. Proc. 42, 2783, (1983).
118. L.P. Morin, “The Circadian Visual System,” Brain. Res. Brain. Res. Rev., 19,102, (1994).
119. A. Wojtysiak, "The Physiological Impact of Lighting," DOE SSL R&D Workshop, San Francisco, CA, (2015). (http://www.energy.gov/sites/prod/files/2015/02/f19/wojtysiak_physiological_sanfrancisco2015.pdf.)
120. http://ib.bioninja.com.au/standard-level/topic-6-human-physiology/66-hormones-homeostasis-and/melatonin.html.
121. P. Pevet, G. Heth, A. Hiam, E. Nevo, “Photoperiod Perception in Theblind Mole Rat (Spalax Ehrenbergi, Nehring): Involvement of the Harderiangland, Atrophied Eyes, and Melatonin,” J. Exp Zool., 232, 41, (1984).
122. S.M. Webb, T.H. Champney, A.K. Lewinski, R.J. Reiter, “Photoreceptor Damage and Eye Pigmentation: Influence on the Sensitivity of Rat Pineal N-Acetyltransferase Activity and Melatonin Levels to Light at Night. Neuroendocrinology. 40, 205, (1985).
123. R.G. Foster, et al. “Circadian Photoreception in the Retinally Degenerate Mouse (rd/rd),” J. Comp. Physiol. A, 169, 39, (1991).
124. M.S. Freedman, et al. “Regulation of Mammalian Circadian Behavior by Non-Rod, Non-Cone, Ocular Photoreceptors,”Science, 284, 502, (5413).
125. I. Provencio, “A Novel Human Opsin in the Inner Retina,” J. Neurosci. 20, 600, (2000).
126. M.D. Rollag, D.M. Berson, I. Provencio, “Melanopsin, Ganglion-Cell Photoreceptors, and Mammalian Photoentrainment,” J. Biol. Rhythms., 18, 227, (200).
127. Govardovskii, et al., “In Search of the Visual Pigment Template,” Vis. Neurosci. 17(4), 509, (2000).
128. G.C. Brainard, et al. “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci., 21(16), 6405, (2001).
129. K. Thapan, J. Arendt and D. J. Skene, “An Action Spectrum for Melatonin Suppression: Evidence for a Novel Non-Rod, Non-Cone Photoreceptor System in Humans,” J. Physiol. 535.1, 261, (2001).
130. J.P. Hanifin, et al. “High-Intensity Red Light Suppresses Melatonin,” Chronobiol Int., 23(1-2), 251, (2006).
131. M.S. Rea, A. Bierman, M.G. Figueiro, J.D. Bullough, “A New Approach To Understanding The Impact Of Circadian Disruption On Human Health,” J. Circadian Rhythms. 6, 7, (2008).
132. J.H. Jou, “Melatonin Suppression Extent Measuring Device,” Patent S20120303282 A1 (2012).
133. ICNIRP. “Guidelines on Limits of Exposure to Ultraviolet Radiation Of Wavelengths Between 180 nm and 400 nm (Incoherent Optical Radiation),” Health Phys. 87, 171, (2004).
134. ICNIRP, “ICNIRP Guidelines on Limits of Exposure to Incoherent Visible and Infrared Radiation”, Health Phys. 105 (1), (2013).
135. F.B.Cohen, “Light Emitting Diodes (LED) for Domestic Lighting: Any Risks for the Eye?” Prog. Retin. Eye Res. 30, 4, (2011).
136. H. Kolb. “Simple Anatomy of the Retina. The Organization of the Retina and Visual System”, website Webvision: The Organization of the Retina and Visual System, (http://webvision.med.utah.edu/book/part‐i‐foundations/simple‐anatomy‐of‐the‐retina) October 2011, as consulted on 30 June 2013.
137. W.K. Noell, V.S. Walker, B.S. Kang, S. Berman, “Retinal Damage by Light in Rats,” Invest. Ophthalmol. 5, 450, (1966).
138. W.T.Jr. Ham, H.A. Mueller, D.H. Sliney, “Retinal Sensitivity to Damage from Short Wavelength Light,” Nature, 260, 153, (1976).
139. CIE, “Photobiological safety of lamps and lamp systems”, CIE S009, 2006
140. IEC, “Photobiological safety of lamps and lamp systems – Part 2: Guidance on manufacturing requirements relating to non‐laser optical radiation safety”, Technical Report IEC TR 62471‐2, 2009
141. ANSI/IESNA (American National Standard Institute / Illuminating Engineering Society of North America) RP27.1‐05. Recommended Practice for Photobiological Safety for Lamps – General Requirements. New York, IESNA, 2005.
142. B.S. Kim, et al. “UV-Ozone Surface Treatment of Indium-Tin-Oxide in Organic Light Emitting Diodes,” J. Korean Phys. Soc. 50 (6), 1858, (2007).
143. J.H. Jou, et al. “Enabling High-Efficiency Organic Light-Emitting Diodes with a Cross-Linkable Electron Confining Hole Transporting Material,” Org. Electron. 24, 254, (2015).
144. I. E. Commission. “Photobiological Safety of Lamps and Lamp Systems,” IEC 62471: IEC, Geneva, (2006).
145. I.M. McIntyre, T.R. Norman, G.D. Burrows, S.M. Armstrong, “Human Melatonin Suppression by Light is Intensity Dependent,” J. Pineal Res. 6,149, (1989).
146. S.J. Su, E. Gonmori, H. Sasabe, J. Kido, “Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrierand Exciton-Confining Structure for Reduced Efficiency Roll-Off,” Adv. Mater. 20, 4189, (2008).
147. J.H. Jou, et al. “Highly Efficient Orange-Red Phosphorescent Organic Light-Emitting Diode using 2,7-bis(carbazo-9-yl)-9,9-ditolyfluorene as the Host,” Appl. Phys. Lett. 96, 143306, (2010).
148. J.H. Lee, et al. “Langevin and Trap-Assisted Recombination in Phosphorescent Organic Light Emitting Diodes,” Adv. Funct. Mater. 24, 4681, (2014).
149. Y. Gong, et al. “AIE-active, Highly Thermally and Morphologically Stable, Mechanochromic and Efficient Solid Emitters for Low Color Temperature OLEDs,” J. Mater. Chem. 2, 7552, (2014).
150. X. Liu, et al. “New Deep-Red Heteroleptic Iridium Complex with 3-Hexylthiophene for Solution-Processed Organic Light-Emitting Diodes Emitting Saturated Red and High CRI White Colors,” Org. Electron. 21, 1, (2015).
151. S.H. Ye, et al.,“Solution processed single-emission layer white polymer light-emitting diodes with high color quality and high performance fromapoly(N-vinyl)carbazole host,” Phys. Chem. Chem. Phys. 17, 8860, (2015).
152. B. Sim, C.K. Moon, K.H. Kim, J.J. Kim, “Quantitative Analysis of the Efficiency of OLEDs,” ACS Appl. Mater. Interfaces. 8, 33010, (2016).
153. W. Starosk, M. Pfeiffer, K. Leo, M. Hoffmann, “Single-Step Triplet-Triplet Annihilation: an Intrinsic Limit for the High Brightness Efficiency of Phosphorescent Organic Light Emitting Diodes,” Phys. Rev. Lett. 98, 197402, (2007).
154. D. Song, S. Zhao, T. Luo, H. Aziz, “Causes of Efficiency Roll-Off in Phosphorescent Organic Light Emitting Devices: Triplet-Triplet Annihilation versus Triplet-Polaron Quenching,” Appl. Phys. Lett. 97, 243304, (2010).