簡易檢索 / 詳目顯示

研究生: 李偉宏
Lee, Wei Hong
論文名稱: 以病患資料分析疾病間伴隨之關聯性
Mining Accompanying Relationships between Diseases from Patient Records
指導教授: 陳良弼
Arbee L.P. Chen
口試委員: 柯佳伶
Koh, Jia Ling
吳宜鴻
Wu, Yi Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 79
中文關鍵詞: 關聯規則
外文關鍵詞: Association Rule
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增加人們對疾病的瞭解,疾病間的關聯一直是熱門的研究議題。在過往的研究裡,大多研究是從基因與疾病的關係為切入的角度,以此探討疾病間的關聯程度。然而,疾病的發生往往受到病患的性別、年齡以及季節因素等等的影響,本論文利用性別及年齡將病患分成不同族群。接著,利用病患資料來探討某一疾病在特定族群中的關聯疾病。舉例來說:對於中年男性的族群當中,患有某一疾病的病人在固定時間內得到另一疾病的人數比例。我們利用資料探勘中的關聯規則演算法找出疾病關聯性,並利用疾病的盛行率以及疾病在性別、年齡以及時間上的病患分佈來過濾找到的疾病關聯,以此提升精確度。藉由專業人士評估實驗結果,顯示我們的過濾方法有不錯的表現。以應用面來說,本研究的結果將可實現許多層面的應用,像是民眾的衛生教育以及專業人士的研究材料等等。


    In order to increase our understanding of diseases, the relationship among diseases becomes popular research nowadays. Several previous works focused on finding the relationships between diseases with genomes. However, relationships between diseases are also affected by many factors such as gender, age, and even seasons. In this work, we divide patients into several groups based on their gender and age. After that, we find the relationships between diseases in the groups from patient records. For example, in a group of middle-aged men, we find the percentage of patients who got a disease after a specified disease in a time period. Association rule mining is adopted to find the relationships. In order to improve the precision of the results, we utilize the prevalence of diseases and distributions of diseases on gender, age, and time to filter the association rules. The experiment results which are evaluated by professionals show that our filtering method is effective. The relationship between diseases we found can be applied to many fields, such as health education for people and research materials for researchers.

    Acknowledgement 1 Abstract 2 摘要 3 1. Introduction 8 2. Related works 10 3. Preliminaries 12 3.1 Dataset 12 3.2 International Classification of Diseases, Ninth Revision (ICD-9) 13 3.3 List of Chronic Diseases 13 3.4 Data Pre-processing 14 3.5 Problem Statement 17 4. Analytical Workflow 18 4.1 Data Exploration 18 4.1.1 Gender 19 4.1.2 Age Group 25 4.1.3 Blood Type 27 4.1.4 Week Number in a Year 31 4.2 Association Rule Mining 32 4.2.1 Association Rule 32 4.2.2 Mining Medical Data 34 4.3 Post-processing 36 4.3.1 Length-2 Rule Filtering 37 4.3.2 Interestingness Measure 38 4.3.3 Feature filtering 45 5. Experiments 50 5.1 Experimental Setting and Ground Truth 50 5.2 Interestingness Filtering Evaluation 51 5.3 “Infreq. → Freq.” Rule Filtering Evaluation 54 5.4 Reserved Rules Evaluation 58 6. Conclusions 62 7. References 63 8. Appendixes 66

    [BF00] I. Bruha and A. Famili, “Postprocessing in Machine Learning and Data Mining,” ACM SIGKDD Explorations Newsletter, pp. 110-114, 2000
    [CL12] M. B. Carson, C. Liu, and H. Lu, “Knowledge Mining of Disease Network can Provide New Insights in Cancer Research through Analysis of Other Disease,” Journal of Carcinogenesis & Mutagenesis, 2012
    [CL14] L. Chen, X. Li, S. Wang, H. Y. Hu, N. Huang, Q. Z. Sheng, M. A. Sharaf, "Mining Personal Health Index from Annual Geriatric Medical Examinations," IEEE International Conference on Data Mining (ICDM '14), pp. 761-766, 2014
    [DZ14] M. Devarakonda, D. Zhang, C. H. Tsou, and M. Bornea, “Problem-Oriented Patient Record Summary: An Early Report on a Watson Application,” IEEE International Conference on e-Health Networking, Applications and Services (Healthcom ‘14), pp. 281-286, 2014
    [GC07] K. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A. L. Barabasi, “The human disease network,” The National Academy of Sciences of the United States of America, 2007
    [H08] Anna Huang, “Similarity Measures for Text Document Clustering,” Proceedings of New Zealand Computer Science Research Student Conference (NZCSRSC ’08), 2008
    [HL14] S. W. Huang, J. W. Lin, T. H. Liou, and H. W. Lin, "Cohort study evaluating the risk of hip fracture among patients with dementia in Taiwan," International Journal of Geriatric Psychiatry, pp. 695-701, 2015
    [HP04] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach,” Data Mining and Knowledge Discovery, pp. 53-87, 2004.
    [HS12] A. Holzinger, K. M. Simonic, and P. Yildirim, “Disease-disease relationships for rheumatic diseases,” IEEE International Conference on Computer Software and Applications (COMPSAC ‘12), 2012
    [HT15] J. S. Hirsch, J. S Tanenbaum, S. L. Gorman, C. Liu, E. Schmitz, D. Hashorva, A. Ervits, D. Vawdrey, M. Sturm, and N. Elhadad, "HARVEST, a longitudinal patient record summarizer, " Journal of the American Medical Informatics Association (JAMIA '15), pp. 263-274, 2015
    [IP15] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview of Data Exploration Techniques,” Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD ’15), pp. 277-281, 2015
    [LH99] B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules with Multiple Minimum Supports,” Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’99), pp. 337-341, 1999
    [MV15] J. Manimaran and T. Velmurugan, “Analyzing the Quality of Association Rules by Computing an Interestingness Measures,” Indian Journal of Science and Technology, 2015
    [MY08] A. Merceron and K. Yacef, “Interestingness Measures for Association Rules in Educational Data,” Educational Data Mining, 2008
    [PB15] E. Potash, J. Brew, A. Loewi, S. Majumdar, A. Reece, J. Walsh, E. Rozier, E. Jorgensen, R. Mansour, and R. Ghani, “Predictive Modeling for Public Health: Preventing Childhood Lead Poisoning,” Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘15), pp. 2039-2047, 2015
    [TL15] F. Y. Tu, G. T. Lin, S. S. Lee, Y. C. Tung, H. P. Tu, and H. C. Chiang, "Prevalence of gout with comorbidity aggregations in southern Taiwan," Joint Bone Spine, pp. 45-51, 2015
    [ZY07] L. Zhou and S. Yau, “Efficient association rule mining among both frequent and infrequent items,” Computers and Mathematics with Applications, 2007
    [ZZ11] M. Zhang, C. Zhu, A. Jacomy, L. J. Lu, and A. G. Jegga, “The Orphan Disease Network,” American Journal Of Human Genetics, pp. 755-766, 2011

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE