簡易檢索 / 詳目顯示

研究生: 黃玉芬
Huang, Yu-Fen
論文名稱: 利用異質網路傳遞從化學、基因與疾病表現型資料來推論藥物與疾病之關聯
Inferring Drug-Disease Associations from Chemical, Genomic and Disease Phenotype Data Using Heterogeneous Network Propagation
指導教授: 蘇豐文
Soo, Von-Wun
口試委員: 陳煥宗
周志遠
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 33
中文關鍵詞: 網路傳遞藥物與疾病之關聯基因表現疾病表現型網路蛋白質網路
外文關鍵詞: Network propagation, Drug-Disease association, Gene expression, Disease phenotype network, Protein network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,關於藥物、疾病表現型及蛋白質的資訊快速累積,愈來愈多科學家投入於利用計算方法來推論出藥物與疾病之關聯。為了有效的整合利用目前擁有的資訊與知識,並且系統化且快速的了解藥物與疾病的關聯性,因此利用資訊的方式做全面性的整合是很重要的。我們提出一種異質性網路傳遞的方法實行在藥物、基因、疾病表現型的三個互連網路,並利用可取得之實驗資料及知識來加強網路上連結的權重,進而推論藥物與所詢問疾病之兩者關聯性。我們使用攝護腺癌及結腸直腸癌做為實驗測試之疾病,我們利用文獻擷取為主的Comparative Toxicogenomics Database作為我們的測試標準。依據實驗結果,我們提出的方法有著高的特異度及敏感度,並且明顯地勝過之前的研究方法。我們成功的證明結合藥物、基因、疾病表現型異質性資訊,也證明了使用網路為基礎的方析方式其可行性及優勢性。使用我們的方法所推論出潛在的藥物與疾病之關聯已吸引到生物學家之注意並能提供毒性基因體研究及藥物重新定位研究新的觀點。


    During the last few years, the knowledge of drug, disease phenotype and protein has been rapidly accumulated and more and more scientists have been draw attention to inferring drug-disease associations by computational method. Development of an integrated approach for systematic discovering drug-disease associations by those informational data is an important issue. We combine three weighted networks of drug, genomic and disease phenotype data from available experimental data and knowledge then infer drug-disease associations by a hetero-network propagation approach. In the experiments, we adopt prostate cancer and colorectal cancer as our test data. We select the manually curated associations from comparative toxicogenomics database as our benchmark. The ranked results show that our proposed method obtains high specificity and sensitivity and clearly outperforms previous methods. We clearly demonstrate the feasibility and benefits of using network-based analyses of chemical, genomic and phenotype data to reveal drug-disease associations. The potential associations which were inferred by our method drew the biologists’ attention and provide new perspectives for toxicogenomics and drug reposition evaluation.

    摘要 i Abstract ii 1 Introduction 1 2 Methods 5 2.1 Construct phenotype homo-network 5 2.2 Construct drug homo-network using chemical similarity 6 2.3 Construct protein interaction homo-network using gene expression data 7 2.4 Integrated disease, protein interactions and chemical homo-networks 8 2.5 Network propagation in the integrated network 9 2.6 Evaluation of association specificity between drug and disease 12 3 Experiments and Results 14 3.1 Data Source and benchmark 14 3.1.1 Gene expression profile 14 3.1.2 Protein interaction network 14 3.1.3 Phenotype network and Phenotype-genotype hetero-network 14 3.1.4 Drug network and drug-target hetero-network 15 3.1.5 Benchmark of drug-disease associations 15 3.2 The performance of our method 15 3.3 The AUC with varying diffusion parameters 18 3.4 The performance of our method with different data source 20 3.5 Potential drug and prostate cancer relations 22 3.6 Potential drug and colorectal cancer relations 24 4 Conclusions 27 5 Reference 29

    [1] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL:The human disease network. Proc Natl Acad Sci USA 2007, 104(21):8685-8690.
    [2] Dimasi JA:New drug development in the United States from 1963 to 1999. Clin Pharmacol Ther 2001, 69:289-96.
    [3] Adams CP, Brantner VV:Estimating the cost of new drug development: Is it really 802 million dollars? Health Aff 2006, 25:402-8.
    [4] Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL:How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010, 9(3):203-14.
    [5] DiMasi J, Hansen R, Grabowski H:R&D Costs and Returns by Therapeutic Category. Drug Information Journal 2004, 38:211-223.
    [6] Mattingly CJ, Rosenstein MC, Colby GT, Forrest JN, Boyer JL:The Comparative toxicogenomics database (CTD): a resource for comparative toxicological studies. J Exp Zool A Comp Exp Biol 2006, 305:689-692.
    [7] Cheng F, Li W, Zhou Y, Lee PW, Tang Y:Prediction of Human Genes and Diseases Targeted by Xenobiotics Using Predictive Toxicogenomics-Derived Models (PTDMs). Mol. BioSyst. 2013, 9(6):1316-25.
    [8] Gong L, Owen RP, Gor W, Altman RB, Klein TE:PharmGKB: an integrated resource of pharmacogenomic data and knowledge. Curr Protoc Bioinformatics 2008, Chapter 14.
    [9] von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R:PROMISCUOUS: a database for network-based drugrepositioning. Nucleic Acids Res 2011, 39:D1060–6.
    [10] Lamb J: The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007, 7:54–60.
    [11] Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR:The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313:1929–1935.
    [12] Li J, Zhu X, Chen JY:Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLoS Comput Biol 2009, 5:e1000450.
    [13] Chiang AP, Butte AJ:Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther 2009, 86:507–510.
    [14] Gottlieb A, Stein GY, Ruppin E, Sharana R:PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 2011, 7:496.
    [15] Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ:Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 2010, 6:e1000662.
    [16] Daminelli S, Haupt VJ, Reimann M, Schroeder M:Drug repositioning through incomplete bi-cliques in an integrated drug-target-disease network. Integr Biol (Camb). 2012, 4(7):778-88.
    [17] Ye H, Yang LL, Cao ZW, Tang KL and Li YX:A pathway profile-based method for drug repositioning. Chinese Science Bulletin 2012, 57:2106-2112.
    [18] Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2002, 30:52–55.
    [19] van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA:A text-mining analysis of the human phenome. Eur J Hum Genet 2006, 14:535–542.
    [20] Gottlieb A, Magger O, Berman I, Ruppin E:PRINCIPLE: A tool for associating genes with diseases via network propagation. Bioinformatics 2011, 27:3325-6.
    [21] Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B. Hassanali M:DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008, 36:D901–D906.
    [22] Weininger D:SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988, 28:31–36.
    [23] Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL:Recent developments of the chemistry development kit (CDK)—an open-source java library for chemo- and bioinformatics. Curr Pharm Des 2006, 12:2111–2120.
    [24] Tanimoto T:Internal report: IBM Technical Report Series. 1957.
    [25] Prieto C. and De Las Rivas J:APID: Agile Protein Interaction Data Analyzer. Nucleic Acids Research 2006, 34:W298-302.
    [26] Kohler S, Bauer S, Horn D, Robinson PN:Walking the Interactome for Prioritization of Candidate Disease Genes. The American Journal of Human Genetics 2008, 82(4):949-958.
    [27] Zhou D, Orshanskiy SA, Zha H, Giles CL:Co-ranking authors and documents in a heterogeneous network. In ICDM 2007:739–744.
    [28] Hwang TH, Kuang R:A Heterogeneous Label Propagation Algorithm for Disease Gene Discovery. Proc. of SIAM International Conference on Data Mining (SDM) 2010:583-594.
    [29] Xi W, Zhang B, Chen Z, Lu Y, Yan S, Ma WY, Fox EA:Link Fusion: A Unified Link Analysis Framework for Multi-Type Interrelated Data Objects. World Wide Web Conference Series - WWW 2004:319-327.
    [30] Pinski G, Narin N:Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Process and Management 1976, 12:297-312.
    [31] Zhou D, Weston J, Gretton A, Bousquet O, Scholkopf B:Learning with local and global consistency. In NIPS 2004, 16:321-328.
    [32] Komurov K, White MA and Ram PT:Use of Data-Biased Random Walks on Graphs for the Retrieval of Context-Specific Networks from Genomic Data, PLoS Comput Biol. 2010, 6(8):e1000889.
    [33] Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, Ferrari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR:Gene expression profiling identifies clinically relevant subtypes of prostate cancer. In Proceedings of the National Academy of Sciences USA 2004, 101(3):811-816.
    [34] Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM:The stanford microarray database. Nucleic Acids Research 2001, 29:152–155.
    [35] Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund AC:Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PLoS One 2009, 4(5):e5645.
    [36] Hong Y, Ho KS, Eu KW, Cheah PY:A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res 2007, 13(4):1107-14..
    [37] Hu G, Agarwal P:Human Disease-Drug Network Based on Genomic Expression Profiles. PLoS ONE 2009, 4(8):e6536.
    [38] Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y:Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference. PLoS Comput Biol. 2012, 8(5):e1002503
    [39] Godden JW, Xue L, Bajorath J: Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci. 2000, 40:163–166.
    [40] Martin YC, Jacson RM:Do structurally similar molecules have similar biological activity? J. Med. Chem. 2002, 45:4350-4358.
    [41] Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M:Drug-target network. Nat Biotechnol 2007, 25(10):1119-26.
    [42] Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P:STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 2012, 40(Database issue):D876-80
    [43] Chun HW, Tsuruoka Y, Kim JD, Shiba R, Nagata N, Hishiki T, Tsujii J:Extraction of gene–disease relations from Medline using domain dictionaries and machine learning. Pac Symp Biocomput. 2006:4-15.
    [44] Chen L,Lu J, Zhang J,Feng KR,Zheng MY,Cai YD:Predicting Chemical Toxicity Effects Based on Chemical-Chemical Interactions. PLoS One. 2013, 8(2):e56517.
    [45] Fujii Y, Kawakami S, Okada Y, Kageyama Y, Kihara K:Regulation of prostate-specific antigen by activin A in prostate cancer LNCaP cells. Am J Physiol Endocrinol Metab. 2004, 286(6):E927-31.
    [46] Giorgi E, Shirley I, Grant J, Stewart J:Androgen dynamics in vitro in the human prostate gland. Effect of cyproterone and cyproterone acetate. Biochem J. 1973, 132(3):465–74.
    [47] Jones WG, Fosså SD, Bono AV, Croles JJ, Stoter G, Pauw MD, Sylvester R:Mitomycin-C in the treatment of metastatic prostate cancer: report on an EORTC phase II study. World Journal of Urology 1986, 4(3):182-185.
    [48] ClinicalTrials.gov [http://clinicaltrials.gov/ct2/show/NCT00031889]
    [49] Larsson SC, Orsini N, Wolk A:Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA. 2010, 303(11):1077-83.
    [50] Nkondjock A, Shatenstein B, Maisonneuve P, Ghadirian P:Assessment of risk associated with specific fatty acids and colorectal cancer among French-Canadians in Montreal: a case-control study. Int J Epidemiol. 2003, 32(2):200-9.
    [51] Nakagawa Y, Akao Y, Morikawa H, Hirata I, Katsu K, Naoe T, Ohishi N, Yagi K:Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 2002, 70(19):2253-69.
    [52] Lee HR, Cheong HJ, Kim SJ, Lee NS, Park HS, Won JH:Sulindac enhances arsenic trioxide-mediated apoptosis by inhibition of NF-kappaB in HCT116 colon cancer cells. Oncol Rep. 2008, 20(1):41-7.
    [53] Milovic V, Turchanowa L:Polyamines and colon cancer. Biochem Soc Trans. 2003, 31(2):381-3.
    [54] Allen WL, McLean EG, Boyer J, McCulla A, Wilson PM, Coyle V, Longley DB, Casero RA Jr, Johnston PG:The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol Cancer Ther. 2007, 6(1):128-37.
    [55] Zell JA, Ziogas A, Ignatenko N, Honda J, Qu N, Bobbs AS, Neuhausen SL, Gerner EW, Anton-Culver H:Associations of a polymorphism in the ornithine decarboxylase gene with colorectal cancer survival. Clin Cancer Res. 2009, 15(19):6208-16.
    [56] Selamnia M, Robert V, Mayeur C, Delpal S, Blachier F:De novo synthesis of arginine and ornithine from citrulline in human colon carcinoma cells: metabolic fate of L-ornithine. Biochim Biophys Acta. 1998, 1425(1):93-102.
    [57] Mackay H, Hedley D, Major P, Townsley C, Mackenzie M, Vincent M, Degendorfer P, Tsao MS, Nicklee T, Birle D, Wright J, Siu L, Moore M, Oza A:A phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin Cancer Res. 2005, 11:5526-5533.
    [58] Kozuch PS, Rocha-Lima CM, Dragovich T, Hochster H, O'Neil BH, Atiq OT, Pipas JM, Ryan DP, Lenz HJ:Bortezomib with or without irinotecan in relapsed or refractory colorectal cancer: results from a randomized phase II study. J Clin Oncol 2008, 26:2320-2326.
    [59] Mager DL:Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med. 2006, 4:14.
    [60] Yoshioka T, Morimoto Y, Iwagaki H, Itoh H, Saito S, Kobayashi N, Yagi T, Tanaka N:Bacterial lipopolysaccharide induces transforming growth factor beta and hepatocyte growth factor through toll-like receptor 2 in cultured human colon cancer cells. J Int Med Res. 2001, 29(5):409-20.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE