研究生: |
許焜傑 Xu, Kun-Jie |
---|---|
論文名稱: |
TM模式磁旋管的色散關係研究 Dispersion Relation of TM-mode Gyrotrons |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
葉義生
Yeh, Yih-Sen 洪健倫 Hung, Chien-Lun 朱國瑞 Chu, Kwo-Ray |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | TM模 、磁旋管 、色散關係 |
外文關鍵詞: | TM mode, gyrotron, dispersion relation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁旋管是一種基於考慮了弱相對論效應後所設計出的高功率同調波源元件。此元件藉由一外加磁場使電子作迴旋運動(Cyclotron motion),並透過特定的設計和調控作用條件使電磁波與入射電子進行交互作用進而將電磁波放大。
前人曾做過研究認為使用TM模的磁旋管效率會遠小於使用TE模的磁旋管。但近期的研究發現,當使TM模的磁旋管作用在返波時的效率並沒有過去所認為的這麼差勁。主要原因是當作用在返波時,TM模擁有的軸方向的電場會使原本應該是互相競爭的兩種Bunching 機制(Azimuthal Bunching和Axial Bunching)變成互相合作關係,而使電子更容易和電磁波進行交互作用後減速並放出能量給電磁波。且經由數值模擬計算後也發現使用TM模的磁旋管確實也有不錯的效率。
在第二章會推導出TM模的色散關係,在進行數值分析前,藉由分析求得的方程式可發現和先前的研究一樣的事實即TM模的效率應當和波的行進方向有關,當作用在後退波條件時的效率會比作用在前進波時的效率還要好。
第三章則會將第二章求得的方程式做數值分析後與TE模做比較,並深入探討各項參數造成的影響。結果可發現TM模雖然不如過去所認為的這麼不堪,但和TE模相比還是稍微遜色。並且TM01模的效果又比TM11模來的更差一些,但這點也符合過去的研究結果。
People thought that gyrotrons was not good in TM-mode, but our lab recent studies found that TM-mode gyrotrons seemed to have possibility.
To proof this fact, I’m going to derive dispersion relation equation, since the dispersion relation equation is the one of important equations of describing electromagnetic wave system. In theoretic, if the dispersion relation have been derived, the property of the electromagnetic wave system can be known simultaneously.
In chapter 2, the dispersion relation equation would be derived, and there would have some simple discussion on the equation which the result is identical with previous studies.
In chapter 3, there would have the numerical analyze result, and would have deeper discussion about the system and physic and the result would identical with previous studies similarly.
[1] K. R. Chu, “The electron cyclotron maser,” Rev. Mod. Phys., vol. 76, no. 2, pp. 489, May. 2004.
[2] A. K. Ganguly, S. Ahn, “Non-linear analysis of the gyro-BWO in three dimensions,” Int. J. Electron., vol. 67, no. 2, pp. 261-271, Mar. 1989.
[3] N. S. Ginzburg, G. S. Nusinovich, “Nonlinear theory of a relativistic gyrotron,” Radiophys Quantum Electron., vol. 22, no. 6, pp. 754-763, Jun. 1979.
[4] T. H. Chang, W. C. Huang, H. Y. Yao, C. L. Hung, W. C. Chen, B. Y. Su, "Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser," Phys. Plasmas, vol. 24, no. 2, pp. 023302, Jan. 2017.
[5] Tsun-Hsu Chang, Hsin-Yu Yao, Bo-Yuan Su, Wei-Chen Huang, Bo-Yuan We, ” nonlinear oscillations of TM-mode gyrotrons,” Phys. Plasmas., vol. 24, no. 12, 122109, Dec. 2017.
[6] C. S. Kou, "Backward traveling wave amplification in the gyrotron," Phys. Plasmas, vol. 4, no. 11, pp. 4140, Aug. 1997.
[7] Y. Y. Lau, K. R. Chu, L. R. Barnett, V. L. Granatstein, "Gyrotron travelling wave amplifier: Analysis of oscillations", Int. J. Infrared Millimeter Waves, vol. 2, no. 3, pp. 373-393, May. 1981.
[8] K. R. Chu and A. T. Lin, "Gain and bandwidth of the gyro-TWT and CARM amplifiers," IEEE Trans. Plasma Sci., vol. 16, no. 2, pp. 90-104, Apr. 1988.
[9] K. R. Chu, A.T. Drobot, V.L. Granatstein, J.L. Seftor, “Characteristics and Optimum Operating Parameters of a Gyrotron Traveling Wave Amplifier,” Trans. Microw. Theory Tech., vol. 27, no. 2, pp. 178-187, Feb. 1917.
[10] Pozar, David M., Microwave Engineering, 4th ed. Hoboken, NJ :Wiley, 2012.
[11] J. Jackson, Classical electrodynamics, 3rd ed. New York, USA: Wiley, 1998.
[12] Tsun-Hsu Chang, Wei-Chen Huang, Wei-Chen Chen, “Feasibility study of TM modes for electron cyclotron maser,” 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 1-2.
[13] C. S. Kou, “Starting oscillation conditions for gyrotron backward wave oscillators,” Phys. Plasmas, vol. 1, no. 9, 3093, Sep. 1994.
[14] K. R. Chu, Nonlinear formulation for gyro-TWT & CARM amplifier
[15] K. R. Chu, Time Domain Analysis of Open Cavities