簡易檢索 / 詳目顯示

研究生: 王珮嘉
Pei-Chia Wang
論文名稱: 人類視覺檢測在液晶顯示器不均勻現象之探討
A Study of Human Vision Inspection for Mura
指導教授: 黃雪玲
Sheue-Ling Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 77
中文關鍵詞: Mura恰辨差視覺液晶顯示器
外文關鍵詞: Mura, JND, vision, LCD
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前液晶顯示器影像品質的檢測還是由人主觀判定,沒有一定的準則來檢測Mura現象,因此,有必要建立使用者和製造者均可接受的Mura現象程度。我們設計Mura模擬實驗來了解人類視覺感知和Mura現象之間的關係。本研究以人因工程的觀點,考慮多種real Mura及其面積大小以及不同的受試者等因素,並有系統地收集資料,以了解哪個因素影響最大,建立國內的恰辨差模式,希望能作為國內LCD廠商檢測標準。

    本研究將透過人因工程的方法,找出人類視覺檢測時的影響因素與影響方式,從實驗結果得知,面積大小是影響視覺對比閾值的最大因素,並進而將其間的關係數量化,以客觀的數據描述Mura特徵,並建立國內JND資料庫,進而作為廠商之間描述Mura的共通語言,避免爭議。


    Currently, the image quality of LCD is examined by human subjectively. There are no consistent rules for examining Mura. For this reason, it is necessary to develop the acceptable Mura standard between users and manufacturers. By designing a Mura simulation experiment, it finds out the relationship between human visual perception and Mura phenomenon.

    In the present study, some factors will be considered such as the various types and sizes of real Mura, and different subjects in the experiment. The steps of data collection and experiments are conducted systematically from the viewpoint of human factors. Furthermore, a domestic JND model of LCD industry can be constructed. This model will become an inspection criterion for domestic LCD industry.

    This study was based on ergonomic experiment to find the factors and the methods in human inspection. From the experimental results, Mura size was the most important factor on visual contrast threshold. The objective in this research is to objectively describe the relationships between the Mura characteristics and visual contrast thresholds. Furthermore, the JND model may provide the common language and avoid debate between customers and industries.

    Contents 摘要 I Abstract II 誌謝 III Contents IV List of Figures VII List of Tables VII Chapter1. Introduction 1 1.1. Background 1 1.2. Objectives 1 1.3. Research framework 2 Chapter2. Literature Reviews 4 2.1. The definition of Mura 4 2.1.1. The structure of TFT-LCD 5 2.1.2. Real Mura types 6 2.1.3. The classification of Mura defects 8 2.2.Methods of threshold (JND) 12 2.2.1. Psychometric method 12 2.2.2. SEMU 13 Chapter3. The First Stage Experimental Method and Results 17 3.1. Experimental environment and equipment 17 3.2. Experimental design 18 3.2.1. Independent variables 18 3.2.2 Dependent variable 21 3.3. Experimental process 21 3.4. Results ………23 3.4.1. The influence of VCT--Mura types and experience 23 3.4.1.1.Stripe versus rubbing 27 3.4.1.2.Light-leakage versus curtain 29 3.4.1.3.H-band 31 3.4.1.4.V-band 34 3.4.2. Comparison with Chen’s experiment—03-spacer 37 3.4.3. The masking effect—light-leakage 40 Chapter4. The Second Stage Experimental Method and Results 42 4.1 Experimental environment and equipment 42 4.2 Experimental design 42 4.2.1. Independent variables 42 4.2.2. Dependent variable 46 4.3 Experimental process 46 4.4 Results 46 4.4.1 Smaller size of H-band 46 4.4.2 Smaller size of V-band 49 4.4.3 Size of curtain 51 4.4.4 Location of curtain 53 Chapter 5 Discussion 56 5.1 Experience 56 5.2 Mura size 56 5.3 The masking effect—curtain 60 Chapter 6 Conclusion 62 References 64 Appendix I Multiple comparison with 15 types for novices 66 Appendix II Multiple comparison with 15 types for experts 72 List of Figures Figure 1-1 Research framework 3 Figure 2-1 The fundamental structure of TFT-LCD [6] 5 Figure 2-2 Cross section of TFT-LCD [6] 5 Figure 2-3 Color forming [6] 6 Figure 2-4 Eleven Real Mura Types. 8 Figure 2-5 Average VCT value under every Real Mura type 8 Figure 2-6 Automatic defect classification system of the present invention [10] 10 Figure 3-1 CSV-1000 Contrast Sensitivity 18 Figure 3-2 15 The pattern of 15 Real Mura types 20 Figure 3-3 The real situation of experiment 21 Figure 3-4 The mean VCT of each Mura type of subjects 23 Figure 3-5 Profile plot for stripe versus rubbing 28 Figure 3-6 Profile plot for light-leakage versus curtain 30 Figure 3-7 The means VCT value under various visual angle for h-band 31 Figure 3-8 The means VCT value under various visual angle for v-band 34 Figure 3-9 Profile plot for comparison of 03-spacer 39 Figure 3-10 Bar chart for the masking effect of light-leakage 41 Figure 4-1 Five smaller sizes of h-band 43 Figure 4-2 Five smaller sizes of v-band 44 Figure 4-3 Five sizes of curtain in 45 Figure 4-4 Four locations of curtain 46 Figure 4-5 The mean VCT for smaller visual angles of h-band 48 Figure 4-6 The mean VCT for smaller visual angles of v-band 51 Figure 4-7 The mean VCT for sizes of curtain 53 Figure 4-8 The mean VCT for location of curtain 55 Figure 5-1 Relation of h-band for novices and experts 57 Figure 5-2 Relation of v-band for novices and experts 58 Figure 5-3 Relation of h-band and v-band 59 Figure 5-4 Relation of sizes of curtain 60 Figure 5-5 Relation of locations of curtain 61 List of Tables Table 2-1 VESA Mura defect phases and classes [11] 10 Table 3-1 Two-way ANOVA—15 types and experience 24 Table 3-2 ANOVA—15 types for novices 25 Table 3-3 ANOVA—15 types for experts 25 Table 3-4 Multiple comparison with 15 types for novices 26 Table 3-5 Multiple comparison with 15 types for experts 27 Table 3-6 Descriptive statistics on stripe versus rubbing 29 Table 3-7 Descriptive statistics on light-leakage versus curtain 30 Table 3-8 Multiple comparison with five visual angles of h-band for novices 32 Table 3-9 Multiple comparison with five visual angles of h-band for experts 33 Table 3-10 Multiple comparison with five visual angles of v-band for novices 35 Table 3-11 Multiple comparison with five visual angles of v-band for experts 36 Table 3-12 Two-way ANOVA—03-spacer for different experiments and subjects 38 Table 3-13 Descriptive statistics on 03-spacer for different experiments and subjects 40 Table 3-14 Descriptive statistics on masking effect of light-leakage 41 Table 4-1 ANOVA—smaller size of h-band 47 Table 4-2 Multiple comparison with five smaller visual angles of h-band 47 Table 4-3 ANOVA—smaller size of v-band 49 Table 4-4 Multiple comparison with five smaller visual angles of v-band 50 Table 4-5 ANOVA—size of curtain 52 Table 4-6 Multiple comparison for size of curtain 52 Table 4-7 ANOVA—location of curtain 54 Table 4-8 Multiple comparison for location of curtain 54

    1. Marino Menozzi, Urs Napflin, and Helmut Krueger, “CRT versus LCD: A pilot study on visual performance and suitability of two display technologies for use in office work”, Displays Vol. 20, pp3-10 (1999).
    2. “Definition of Measurement Index (SEMU) for luminance Mura in FPD image quality inspection”, SEMI D31-1102 (2002).
    3. T. Tamura, K. Tanaka, M. Baba, M. Suzuki and T. Furuhata, “Just noticeable difference (JND) contrast of Mura in LCDs on the five background luminance levels”, IDW pp1623-1626 (2004).
    4. Jae Y. LEE and Suk I. YOO, “Automatic detection of region-mura defect in TFT-LCD”, IEICE Trans (2004).
    5. http://www.propii.com.tw/downloads/radiant/MURA-chinese.pdf
    6. http://www.toppoly.com/Toppoly/tw/Technology/TFT.asp
    7. Y. Mori, K. Tanahashi,R. Yoshitake, and S. Tsuji, Extraction and evaluation of Mura images in liquid crystal displays, IBM Japan, Ltd.
    8. 黃雪玲等五人,中華民國台灣薄膜電晶體液晶顯示器產業協會,合作研究計畫期末報告書 p16 (2005).
    9. 黃雪玲等五人,中華民國台灣薄膜電晶體液晶顯示器產業協會,合作研究計畫期末報告書 pp30-31 (2005).
    10. Brecher et al, Automated defect classification system, United States Patent, Patent Number:5,544,256 (1996)
    11. 330-x Mura defect ,VESA, pp1-15 (2000).
    12. Walter H. Ehresnstein and Addie Ehrenstein, Psychophysical Methods, chapter 43
    13. Andrew B. Watson, Quest: A Bayesian adaptive psychometric method, Perception & Psychophysics (1983).
    14. Jiang, X., Gramopadhye, A. K., Melloy, B. J., and Grimes, L. W, “Evaluation of best system performance: human, automated, and hybrid inspection systems”, Human Factors and Ergonomic in Manufacturing, vol. 13(2), pp137-125 (2003).
    15. Chin-Chiuan Lin, Effect of screen luminance combination and text color on visual performance with TFT-LCD, International Journal of Industrial Ergonomics 35 pp229-235 (2005).
    16. T. Tamura, K. Tanaka, T. Satoh, and T. Furuhata, “Relation between Just noticeable difference (JND) contrast of Mura in LCDs and its background luminance”, IDW pp1843-1846 (2005).
    17. Peter G.J. Barten, Contrast sensitivity of the human eye and its effects on image quality, chapter 3, SPIE Press, Bellingham WA (1999).
    18. Peter G.J. Barten, Formula for the contrast sensitivity of the human eye, SPIE Vol.5294 (2004).
    19. 黃雪玲等五人,中華民國台灣薄膜電晶體液晶顯示器產業協會,合作研究計畫期末報告書 pp14-33 (2005).
    20. Y. Mori, K. Tanahashi, R. Yoshitake, S.Tsuji, “Extraction and evaluation of mura images in liquid crystal displays”, Algorithms and Systems for Optical Information Processing V,SPIE, p299-306 (2001).
    21. Y. Mori, R. Yoshitake, Tohru Tamura, “Evaluation and discrimination method of “mura” in liquid crystal displays by just noticeable difference observation”, Proceedings of SPIE, Vol. 4902, p715-720 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE