簡易檢索 / 詳目顯示

研究生: 林政盛
Lin, Cheng-Sheng
論文名稱: 以組織樣本進行適體篩選優化的自動化微流體系統之研發
An Automated Microfluidic System for Optimization of Aptamer Selection by Using Cancer Tissue Samples
指導教授: 李國賓
Lee, Gwo-Bin
口試委員: 張晃猷
Chang, Hwan-You
許耿福
Hsu, Keng-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 微流體適體配體指數增強進化技術調配優化癌症診斷組織切片
外文關鍵詞: Microfluidics, aptamers, SELEX, formulation, optimization, cancer diagnosis, tissue slide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是全球重大的疾病之一,早期階段診斷癌症可以增加患者的存活率,因此有必要建立一個準確的方法來早期診斷癌症。近年來適體被視為有望取代傳統抗體的工具,因此尋找對癌症組織相關的特定標靶具有高專一性和親合力的適體很重要。配體指數增強進化技術(SELEX)是用來篩選對生物相關分子具有高專一性及親和性的適體的一項技術。然而這項技術在大型系統操作上是非常耗時且耗人力,而微流體系統是個可用來改善此技術的強大工具。然而適體的專一性及親和力容易受到酸鹼性、離子種類及濃度的影響,即使可在篩選後再優化,亦顯得複雜且費力。此研究建立一個可以自動化優化適體篩選過程的微流體系統。兩個不同的微流體晶片結合在此系統中,一個晶片用來調整溶液中的離子種類和濃度,而另一個晶片則用來進行配體指數增強進化技術優化。三個適體已被成功篩選出且進行了對卵巢癌組織專一性和親和性的測試,實驗結果顯示在經過優化篩選後的適體(H-45)具有比在先前研究中用未優化的篩選條件篩選出的適體(cTX-36)擁有更好的專一性和親和性。因此,此微流體系統是一個可用來優化適體篩選過程且應用在篩選診斷癌症的人工抗體之利器。


    Cancer is one of the most serious diseases globally for decades. Diagnosis of cancer at early stages can significantly increase the survival rate of the patients. Therefore, it is necessary to establish an accurate method for early diagnosis of cancers. Recently, aptamers are considered as promising tools to replace the conventional antibodies. Therefore, screening aptamer candidates with high affinity and specificity towards the specific targets associate with cancer tissues is important. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most popular processes to screen aptamers with high specificity and affinity toward the biological relevant molecules. However, a bench-top protocol of the SELEX procedure is relatively labor-intensive and time-consuming. Alternatively, microfluidic systems could be a powerful tool to advance SELEX technology. However, specificity and affinity of aptamers are sensitive to several parameters such as pH values, ion species, and ion concentrations, although post-SELEX could be used to optimize aptamers after SELEX process, which could be relatively complicate and laborious. In this study, an integrated microfluidic system was established to carry out optimization of aptamer selection automatically. Two microfluidic chips were integrated in this system, including a formulation chip to formulate ion species and concentrations of binding buffer for the following SELEX process on another optimization-SELEX chip. Three aptamers were screened and tested with their specificity and affinity. Experimental results showed that an aptamer called H-45 which was screened after an optimal condition exhibited higher specificity and affinity toward ovarian cancer tissue samples than another aptamer (i.e. cTX-36) which was screened from the condition without optimization in our previous study. The developed system might be a powerful device for optimization of aptamer selection and could be used for screening of artificial antibodies for cancer diagnosis.

    Acknowledgements I Abstract II 中文摘要 IV Table of contents V List of figures VII List of tables XII Nomenclature and abbreviations XIII Chapter 1 Introduction 1 1.1 Cancer 1 1.2 Antibodies and aptamers 3 1.3 Microfluidics 5 1.4 Systematic evolution of ligands by exponential enrichment (SELEX) 7 1.5 Optimization of SELEX 9 1.6 Motivation and novelty 12 Chapter 2 Materials and methods 14 2.1 Experimental procedure 14 2.2 Materials and reagents 18 2.3 Chip design and microfabrication process 21 2.3.1 Formulation chip 21 2.3.2 Optimization-SELEX chip 25 2.3.3 Microfabrication of microfluidic chips 27 2.3.4 Integration and packaging of two chips 30 2.4 Experimental setup 32 2.5 Tissue slide pretreatment 34 2.6 Bio-Rad DC protein assay 35 2.7 The determination of the ssDNA capture rate 37 2.8 Fluorescent staining of aptamers 39 2.9 Determination of the dissociation constants 41 Chapter 3 Results and discussion 42 3.1 Characterization of the integrated microfluidic system 42 3.1.1 Performance of micro-pumps and micro-mixers 42 3.1.2 Thermal cycling of the temperature control module 47 3.1.3 Performance of the formulation chip 50 3.2 Capture rate of aptamers under different screening condition. 53 3.3 Results of optimization-SELEX 57 3.3.1 Optimization-SELEX 57 3.3.2 Aptamer candidates 60 3.4 Identification of specificity and affinity toward ovarian cancer 62 3.4.1 Tissue fluorescent staining 62 3.4.2 Cell fluorescent staining 72 3.4.3 Binding affinity 81 Chapter 4 Conclusions and future perspective 84 4.1 Conclusions 84 4.2 Future perspective 86 Optimization method for one round aptamer selection. 86 Optimization of transportation between two microfluidic chips. 86 References 87

    1. R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2020,” CA: A Cancer Journal for Clinicians, vol. 70, no. 1, pp. 7-30, 2020.
    2. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883-899, 2010.
    3. H. van Slooten, A. Schaberg, D. Smeenk, and A. J. Moolenaar, “Morphologic characteristics of benign and malignant adrenocortical tumors,” Cancer, vol. 55, no. 4, pp. 766-773, 1985.
    4. S. H. Dairkee, L. Puett, and A. J. Hackett, “Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue1,” JNCI Journal of the National Cancer Institute, vol. 80, no. 9, pp. 691-695, 1988.
    5. B. A. Goff, L. Mandel, H. G. Muntz, and C. H. Melancon, “Ovarian carcinoma diagnosis,” Cancer, vol. 89, no. 10, pp. 2068-2075, 2000.
    6. L. Zhang, J. R. Conejo-Garcia, D. Katsaros, P. A. Gimotty, M. Massobrio, G. Regnani, A. Makrigiannakis, H. Gray, K. Schlienger, M. N. Liebman, S. C. Rubin, and G. Coukos, “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” New England Journal of Medicine, vol. 348, no. 3, pp. 203-213, 2003.
    7. L. A. Torre, B. Trabert, C. E. Desantis, K. D. Miller, G. Samimi, C. D. Runowicz, M. M. Gaudet, A. Jemal, and R. L. Siegel, “Ovarian cancer statistics, 2018,” CA: A Cancer Journal for Clinicians, vol. 68, no. 4, pp. 284-296, 2018.
    8. C. H. Holschneider and J. S. Berek, “Ovarian cancer: Epidemiology, biology, and prognostic factors,” Seminars in Surgical Oncology, vol. 19, no. 1, pp. 3-10, 2000.
    9. L. A. Baldwin, B. Huang, R. W. Miller, T. Tucker, S. T. Goodrich, I. Podzielinski, C. P. Desimone, F. R. Ueland, J. R. V. Nagell, and L. G. Seamon, “Ten-year relative survival for epithelial ovarian cancer,” Obstetrics & Gynecology, vol. 120, no. 3, pp. 612-618, 2012.
    10. R. Sauer, H. Becker, W. Hohenberger, C. Rödel, C. Wittekind, R. Fietkau, P. Martus, J. Tschmelitsch, E. Hager, C. F. Hess, J.-H. Karstens, T. Liersch, H. Schmidberger, and R. Raab, “Preoperative versus postoperative chemoradiotherapy for rectal cancer,” New England Journal of Medicine, vol. 351, no. 17, pp. 1731-1740, 2004.
    11. D. Cunningham, W. H. Allum, S. P. Stenning, J. N. Thompson, C. J. V. D. Velde, M. Nicolson, J. H. Scarffe, F. J. Lofts, S. J. Falk, T. J. Iveson, D. B. Smith, R. E. Langley, M. Verma, S. Weeden, and Y. J. Chua, “Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer,” New England Journal of Medicine, vol. 355, no. 1, pp. 11-20, 2006.
    12. R. Stupp, M. E. Hegi, W. P. Mason, M. J. V. D. Bent, M. J. Taphoorn, R. C. Janzer, S. K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A. A. Brandes, J. Gijtenbeek, C. Marosi, C. J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J. G. Cairncross, and R.-O. Mirimanoff, “Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial,” The Lancet Oncology, vol. 10, no. 5, pp. 459-466, 2009.
    13. J. A. Bonner, P. M. Harari, J. Giralt, N. Azarnia, D. M. Shin, R. B. Cohen, C. U. Jones, R. Sur, D. Raben, J. Jassem, R. Ove, M. S. Kies, J. Baselga, H. Youssoufian, N. Amellal, E. K. Rowinsky, and K. K. Ang, “Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck,” New England Journal of Medicine, vol. 354, no. 6, pp. 567-578, 2006.
    14. D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton, “Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2,” New England Journal of Medicine, vol. 344, no. 11, pp. 783-792, 2001.
    15. J. H. Schiller, D. Harrington, C. P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, and D. H. Johnson, “Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer,” New England Journal of Medicine, vol. 346, no. 2, pp. 92-98, 2002.
    16. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909-915, 2004.
    17. T. N. Schumacher and R. D. Schreiber, “Neoantigens in cancer immunotherapy,” Science, vol. 348, no. 6230, pp. 69-74, 2015.
    18. J. Baselga, M. Campone, M. Piccart, H. A. Burris, H. S. Rugo, T. Sahmoud, S. Noguchi, M. Gnant, K. I. Pritchard, F. Lebrun, J. T. Beck, Y. Ito, D. Yardley, I. Deleu, A. Perez, T. Bachelot, L. Vittori, Z. Xu, P. Mukhopadhyay, D. Lebwohl, and G. N. Hortobagyi, “Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer,” New England Journal of Medicine, vol. 366, no. 6, pp. 520-529, 2012.
    19. I. F. Tannock, D. Osoba, M. R. Stockler, D. S. Ernst, A. J. Neville, M. J. Moore, G. R. Armitage, J. J. Wilson, P. M. Venner, C. M. Coppin, and K. C. Murphy, “Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points.,” Journal of Clinical Oncology, vol. 14, no. 6, pp. 1756-1764, 1996.
    20. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105-111, 2001.
    21. S. Ascioglu, J. H. Rex, B. D. Pauw, J. E. Bennett, J. Bille, F. Crokaert, D. W. Denning, J. P. Donnelly, J. E. Edwards, Z. Erjavec, D. Fiere, O. Lortholary, J. Maertens, J. F. Meis, T. F. Patterson, J. Ritter, D. Selleslag, P. M. Shah, D. A. Stevens, and T. J. Walsh, “Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: An international consensus,” Clinical Infectious Diseases, vol. 34, no. 1, pp. 7-14, 2002.
    22. E. M. V. Allen, N. Wagle, P. Stojanov, D. L. Perrin, K. Cibulskis, S. Marlow, J. Jane-Valbuena, D. C. Friedrich, G. Kryukov, S. L. Carter, A. Mckenna, A. Sivachenko, M. Rosenberg, A. Kiezun, D. Voet, M. Lawrence, L. T. Lichtenstein, J. G. Gentry, F. W. Huang, J. Fostel, D. Farlow, D. Barbie, L. Gandhi, E. S. Lander, S. W. Gray, S. Joffe, P. Janne, J. Garber, L. Macconaill, N. Lindeman, B. Rollins, P. Kantoff, S. A. Fisher, S. Gabriel, G. Getz, and L. A. Garraway, “Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine,” Nature Medicine, vol. 20, no. 6, pp. 682-688, 2014.
    23. M. Siddiqui and S. V. Rajkumar, “The high cost of cancer drugs and what we can do about it,” Mayo Clinic Proceedings, vol. 87, no. 10, pp. 935-943, 2012.
    24. N. E. Weisser and J. C. Hall, “Applications of single-chain variable fragment antibodies in therapeutics and diagnostics,” Biotechnology Advances, vol. 27, no. 4, pp. 502-520, 2009.
    25. H. E. N. D. Vegvar and W. H. Robinson, “Microarray profiling of antiviral antibodies for the development of diagnostics, vaccines, and therapeutics,” Clinical Immunology, vol. 111, no. 2, pp. 196-201, 2004.
    26. G. P. Owens, J. L. Bennett, H. Lassmann, K. C. O'connor, A. M. Ritchie, A. Shearer, C. Lam, X. Yu, M. Birlea, C. Dupree, R. A. Williamson, D. A. Hafler, M. P. Burgoon, and D. Gilden, “Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid,” Annals of Neurology, vol. 65, no. 6, pp. 639-649, 2009.
    27. G. W. Litman, J. P. Rast, M. J. Shamblott, R. N. Haire, M. Hulst, W. Roess, R. T. Litman, K. R. Hinds-Frey, A. Zilch, and C. T. Amemiya, “Phylogenetic diversification of immunoglobulin genes and the antibody repertoire,” Molecular Biology and Evolution, vol. 10, no. 1, pp. 60-72, 1993.
    28. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature, vol. 355, no. 6360, pp. 564-566, 1992.
    29. S. D. Jayasena, “Aptamers: An emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628-1650, 1999.
    30. O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, and R. Langer, “Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo,” Proceedings of the National Academy of Sciences, vol. 103, no. 16, pp. 6315-6320, 2006.
    31. A. D. Keefe, S. Pai, and A. Ellington, “Aptamers as therapeutics,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 537-550, 2010.
    32. A. B. Iliuk, L. Hu, and W. A. Tao, “Aptamer in bioanalytical applications,” Analytical Chemistry, vol. 83, no. 12, pp. 4440-4452, 2011.
    33. J. Liu, Z. Cao, and Y. Lu, “Functional nucleic acid sensors,” Chemical Reviews, vol. 109, no. 5, pp. 1948-1998, 2009.
    34. T. Hermann, “Adaptive recognition by nucleic acid aptamers,” Science, vol. 287, no. 5454, pp. 820-825, 2000.
    35. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, “Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications,” Chemical Reviews, vol. 112, no. 11, pp. 5818-5878, 2012.
    36. P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “Micro total analysis systems. 2. Analytical standard operations and applications,” Analytical Chemistry, vol. 74, no. 12, pp. 2637-2652, 2002.
    37. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Reviews of Modern Physics, vol. 77, no. 3, pp. 977-1026, 2005.
    38. D. C. Duffy, J. C. Mcdonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Analytical Chemistry, vol. 70, no. 23, pp. 4974-4984, 1998.
    39. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual Review of Biomedical Engineering, vol. 3, no. 1, pp. 335-373, 2001.
    40. S. H. Lee, H. E. Jeong, M. C. Park, J. Y. Hur, H. S. Cho, S. H. Park, and K. Y. Suh, “Fabrication of hollow polymeric microstructures for shear-protecting cell-containers,” Advanced Materials, vol. 20, no. 4, pp. 788-792, 2008.
    41. F. An, Y. Qu, Y. Luo, N. Fang, Y. Liu, Z. Gao, W. Zhao, and B. Lin, “A laminated microfluidic device for comprehensive preclinical testing in the drug ADME process,” Scientific Reports, vol. 6, no. 1, pp. 25022, 2016.
    42. V. Faustino, S. O. Catarino, R. Lima, and G. Minas, “Biomedical microfluidic devices by using low-cost fabrication techniques: A review,” Journal of Biomechanics, vol. 49, no. 11, pp. 2280-2292, 2016.
    43. G. Weisgrab, A. Ovsianikov, and P. F. Costa, “Functional 3D printing for microfluidic chips,” Advanced Materials Technologies, vol. 4, no. 10, pp. 1900275, 2019.
    44. S. R. Quake, “From micro- to nanofabrication with soft materials,” Science, vol. 290, no. 5496, pp. 1536-1540, 2000.
    45. H. Stone, A. Stroock, and A. Ajdari, “Engineering flows in small devices,” Annual Review of Fluid Mechanics, vol. 36, no. 1, pp. 381-411, 2004.
    46. D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, “Micro total analysis systems. 1. Introduction, theory, and technology,” Analytical Chemistry, vol. 74, no. 12, pp. 2623-2636, 2002.
    47. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, vol. 5, no. 3, pp. 210-218, 2006.
    48. D. Mark, S. Haeberle, G. Roth, F. V. Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153, 2010.
    49. L. Y. Hung, C. H. Wang, K. F. Hsu, C. Y. Chou, and G. B. Lee, “An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells,” Lab Chip, vol. 14, no. 20, pp. 4017-4028, 2014.
    50. K. Y. Lien, W. C. Lee, H. Y. Lei, and G. B. Lee, “Integrated reverse transcription polymerase chain reaction systems for virus detection,” Biosensors and Bioelectronics, vol. 22, no. 8, pp. 1739-1748, 2007.
    51. K. Y. Lien, J. L. Lin, C. Y. Liu, H. Y. Lei, and G. B. Lee, “Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system,” Lab on a Chip, vol. 7, no. 7, pp. 868, 2007.
    52. K. Y. Lien, Y. H. Chuang, L. Y. Hung, K. F. Hsu, W. W. Lai, C. L. Ho, C. Y. Chou, and G. B. Lee, “Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems,” Lab on a Chip, vol. 10, no. 21, pp. 2875, 2010.
    53. Y. D. Ma, K. Luo, W. H. Chang, and G. B. Lee, “A microfluidic chip capable of generating and trapping emulsion droplets for digital loop-mediated isothermal amplification analysis,” Lab on a Chip, vol. 18, no. 2, pp. 296-303, 2018.
    54. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818-822, 1990.
    55. C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505-510, 1990.
    56. R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomolecular Engineering, vol. 24, no. 4, pp. 381-403, 2007.
    57. X. Fang and W. Tan, “Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach,” Accounts of Chemical Research, vol. 43, no. 1, pp. 48-57, 2010.
    58. X. Lou, J. Qian, Y. Xiao, L. Viel, A. E. Gerdon, E. T. Lagally, P. Atzberger, T. M. Tarasow, A. J. Heeger, and H. T. Soh, “Micromagnetic selection of aptamers in microfluidic channels,” Proceedings of the National Academy of Sciences, vol. 106, no. 9, pp. 2989-2994, 2009.
    59. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, “Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX),” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1761-1766, 2010.
    60. S. Ohuchi, “Cell-SELEX technology,” BioResearch Open Access, vol. 1, no. 6, pp. 265-272, 2012.
    61. P. Bayat, R. Nosrati, M. Alibolandi, H. Rafatpanah, K. Abnous, M. Khedri, and M. Ramezani, “SELEX methods on the road to protein targeting with nucleic acid aptamers,” Biochimie, vol. 154, pp. 132-155, 2018.
    62. S. Li, H. Xu, H. Ding, Y. Huang, X. Cao, G. Yang, J. Li, Z. Xie, Y. Meng, X. Li, Q. Zhao, B. Shen, and N. Shao, “Identification of an aptamer targeting hnRNP A1 by tissue slide‐based SELEX,” The Journal of Pathology, vol. 218, no. 3, pp. 327-336, 2009.
    63. R. K. Mosing, S. D. Mendonsa, and M. T. Bowser, “Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase,” Analytical Chemistry, vol. 77, no. 19, pp. 6107-6112, 2005.
    64. J. A. J. Wondergem, H. Schiessel, and M. Tompitak, “Performing SELEX experiments in silico,” The Journal of Chemical Physics, vol. 147, no. 17, pp. 174101, 2017.
    65. Y. Nonaka, W. Yoshida, K. Abe, S. Ferri, H. Schulze, T. T. Bachmann, and K. Ikebukuro, “Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system,” Analytical Chemistry, vol. 85, no. 2, pp. 1132-1137, 2012.
    66. Y. Kim, Z. Cao, and W. Tan, “Molecular assembly for high-performance bivalent nucleic acid inhibitor,” Proceedings of the National Academy of Sciences, vol. 105, no. 15, pp. 5664-5669, 2008.
    67. R. E. Wang, H. Wu, Y. Niu, and J. Cai, “Improving the stability of aptamers by chemical modification,” Current Medicinal Chemistry, vol. 18, no. 27, pp. 4126-4138, 2011.
    68. X. Zheng, B. Hu, S. Gao, D. Liu, M. Sun, B. Jiao, and L. Wang, “A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation,” Toxicon, vol. 101, pp. 41-47, 2015.
    69. T. Hianik, V. Ostatná, M. Sonlajtnerova, and I. Grman, “Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin,” Bioelectrochemistry, vol. 70, no. 1, pp. 127-133, 2007.
    70. F. Wei, B. Bai, and C.-M. Ho, “Rapidly optimizing an aptamer based BoNT sensor by feedback system control (FSC) scheme,” Biosensors and Bioelectronics, vol. 30, no. 1, pp. 174-179, 2011.
    71. C. H. Wang, C. P. Chang, and G. B. Lee, “Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses,” Biosensors and Bioelectronics, vol. 86, pp. 247-254, 2016.
    72. N. Komarova and A. Kuznetsov, “Inside the black box: what makes SELEX better?,” Molecules, vol. 24, no. 19, pp. 3598, 2019.
    73. J. W. Shim, Q. Tan, and L.-Q. Gu, “Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity,” Nucleic Acids Research, vol. 37, no. 3, pp. 972-982, 2008.
    74. Y. Xiao, T. Uzawa, R. J. White, D. Demartini, and K. W. Plaxco, “On the signaling of electrochemical aptamer-based sensors: collision- and folding-based mechanisms,” Electroanalysis, vol. 21, no. 11, pp. 1267-1271, 2009.
    75. F. Wei and C. M. Ho, “Aptamer-based electrochemical biosensor for Botulinum neurotoxin,” Analytical and Bioanalytical Chemistry, vol. 393, no. 8, pp. 1943-1948, 2009.
    76. W. T. Liu, W. B. Lee, Y. C. Tsai, Y. J. Chuang, K. F. Hsu, and G. B. Lee, “An automated microfluidic system for selection of aptamer probes against ovarian cancer tissues,” Biomicrofluidics, vol. 13, no. 1, pp. 014114, 2019.
    77. C. H. Weng, K. Y. Lien, S. Y. Yang, and G. B. Lee, “A suction-type, pneumatic microfluidic device for liquid transport and mixing,” Microfluidics and Nanofluidics, vol. 10, no. 2, pp. 301-310, 2010.
    78. M. A. Unger, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, no. 5463, pp. 113-116, 2000.
    79. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” Journal of Biological Chemistry, vol. 193, no. 1, pp. 265-275, 1951.
    80. E. C. Jensen, “Quantitative Analysis of histological staining and fluorescence using ImageJ,” The Anatomical Record, vol. 296, no. 3, pp. 378-381, 2013.
    81. K. Sefah, D. Shangguan, X. Xiong, M. B. O'donoghue, and W. Tan, “Development of DNA aptamers using cell-SELEX,” Nature Protocols, vol. 5, no. 6, pp. 1169-1185, 2010.

    QR CODE