簡易檢索 / 詳目顯示

研究生: 池瀚怡
Chi, Alison Hanyi
論文名稱: 重述句子至不同的複雜度
Learning to Paraphrase Sentences to Different Complexity Levels
指導教授: 張俊盛
Chang, Jason S.
口試委員: 顏安孜
高宏宇
張寶玉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 51
中文關鍵詞: 重述句子句子簡化句子複雜化維持複雜度改寫
外文關鍵詞: paraphrasing, sentence simplification, sentence complexification, same-level paraphrasing
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 句子簡化是自然語言處理中一個活躍的研究領域,但句子複雜化和維持複雜度改寫這兩個相關任務卻沒有得到充分的關注。為了在這三個任務上訓練模型,我們提出了兩個新的非監督數據,分別由弱分類器、規則式方法標記所產生。我們使用提出的兩個非監督數據集與另一個監督數據集分別進行訓練,並進行廣泛地實驗,以了解多任務學習與提示策略對於句子改寫任務之改進。相對於在非監督平行語料上訓練的其他系統,我們使用弱分類器標記資料所訓練的模型在ASSET簡化測試集上達到了最先進的性能。此外,我們的模型在句子等級轉換任務也超越了先前相關研究成果。


    While sentence simplification is an active research topic in NLP, its closely related tasks of sentence complexification and same-level paraphrasing are not. We present two methods to automatically create datasets for all three tasks, weak classification and a rule-based approach. We compare datasets created by these methods with a single human-labeled dataset. Using these three datasets for training, we perform extensive experiments on both multitasking and prompting strategies. Compared to other systems trained on machine-labeled parallel data, models trained on our weak classifier labeled dataset achieve state-of-the-art performance on the ASSET simplification benchmark. Our models also outperform previous research on sentence level targeting.

    1 Introduction . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . 5 2.1 Sentence Complexity Classification . . . . . . . . . . . . . . . . . . 5 2.2 Changing Sentence Complexity . . . . . . . . . . . . . . . . . . . . 6 2.3 Sentence Simplification . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 CEFR Level Classification 10 3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Paraphrasing Data 16 4.1 Human-labeled Data . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Machine-labeled Data . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 Paraphrasing Experiments 20 5.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Prompting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Paraphrasing Evaluation 23 6.1 Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.2 Evaluation Data . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.3 Simplification Results . . . . . . . . . . . . . . . . . . . . . . 25 6.1.4 Complexification Results . . . . . . . . . . . . . . . . . . . . 26 6.1.5 Same-level Paraphrasing Results . . . . . . . . . . . . . . . . 28 6.1.6 Ablation Study Results . . . . . . . . . . . . . . . . . . . . . 29 6.1.7 Level Targeting Results . . . . . . . . . . . . . . . . . . . . . 33 6.2 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 Conclusion . . . . . . . . . . . . . . . . . . 38 Bibliography . . . . . . . . . . . . . . . . . . 39

    Sweta Agrawal and Marine Carpuat. 2019. Controlling text complexity in neural machine translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1549–1564, Hong Kong, China. Association for Computational Linguistics.
    Fernando Alva-Manchego, Louis Martin, Antoine Bordes, Carolina Scarton, Benoît Sagot, and Lucia Specia. 2020a. ASSET: A dataset for tuning and evaluation of sentence simplification models with multiple rewriting transformations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4668–4679, Online. Association for Computational Linguistics.
    Fernando Alva-Manchego, Louis Martin, Carolina Scarton, and Lucia Specia. 2019. EASSE: Easier automatic sentence simplification evaluation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 49–54, Hong Kong, China. Association for Computational Linguistics.
    Fernando Alva-Manchego, Carolina Scarton, and Lucia Specia. 2020b. Data-driven sentence simplification: Survey and benchmark. Computational Linguistics, 46(1):135–187.
    Yuki Arase, Satoru Uchida, and Tomoyuki Kajiwara. 2022. CEFR-based sentence difficulty annotation and assessment. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6206–6219, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
    Leonid Berov and Kai Standvoss. 2018. Discourse embellishment using a deep encoder-decoder network. In Proceedings of the 3rd Workshop on Computational Creativity in Natural Language Generation (CC-NLG 2018), pages 11–16, Tilburg, the Netherlands. Association for Computational Linguistics.
    Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Libovick`y, Michal Novák, Martin Popel, Roman Sudarikov, and Dušan Variš. 2016. Czeng 1.6: enlarged czech-english parallel corpus with processing tools dockered. In Text, Speech, and Dialogue: 19th International Conference, TSD 2016, Brno, Czech Republic, September 12-16, 2016, Proceedings 19, pages 231–238. Springer.
    Annette Capel. 2012. Completing the english vocabulary profile: C1 and c2 vocabulary. English Profile Journal, 3:e1.
    M.-H. Chen, S.-T. Huang, J.S. Chang, and H.-C. Liou. 2015. Developing a corpusbased paraphrase tool to improve efl learners’ writing skills. Computer Assisted Language Learning, 28(1):22–40.
    Jordan Clive, Kris Cao, and Marek Rei. 2021. Control prefixes for text generation. arXiv preprint arXiv:2110.08329v2.
    Council of Europe. 2001. Common European framework of reference for languages: Learning, teaching, assessment. Cambridge University Press.
    Mohammad Dehghan, Dhruv Kumar, and Lukasz Golab. 2022. GRS: Combining generation and revision in unsupervised sentence simplification. In Findings of the Association for Computational Linguistics: ACL 2022, pages 949–960, Dublin, Ireland. Association for Computational Linguistics.
    Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
    Anna Dmitrieva and Jörg Tiedemann. 2020. A multi-task learning approach to text simplification. In International Conference on Analysis of Images, Social Networks and Texts, pages 78–89. Springer.
    Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi Kit Cheung. 2019. EditNTS: An neural programmer-interpreter model for sentence simplification through explicit editing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3393–3402, Florence, Italy. Association for Computational Linguistics. John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159.
    Yutao Feng, Jipeng Qiang, Yun Li, Yunhao Yuan, and Yi Zhu. 2023. Sentence simplification via large language models. arXiv preprint arXiv:2302.11957.
    Yoshinari Fujinuma and Masato Hagiwara. 2021. Semi-supervised joint estimation of word and document readability. In Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 150–155, Mexico City, Mexico. Association for Computational Linguistics.
    Thomas Gaillat, Andrew Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, and Manel Zarrouk. 2022. Predicting CEFR levels in learners of english: The use of microsystem criterial features in a machine learning approach. ReCALL, 34(2):130–146.
    Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. AllenNLP: A deep semantic natural language processing platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages 1–6, Melbourne, Australia. Association for Computational Linguistics.
    Han Guo, Ramakanth Pasunuru, and Mohit Bansal. 2018. Dynamic multi-level multi-task learning for sentence simplification. In Proceedings of the 27th International Conference on Computational Linguistics, pages 462–476, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
    Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text degeneration. arXiv preprint arXiv:1904.09751.
    J Edward Hu, Rachel Rudinger, Matt Post, and Benjamin Van Durme. 2019. Parabank: Monolingual bitext generation and sentential paraphrasing via lexicallyconstrained neural machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6521–6528.
    Chieh-Yang Huang, Mei-Hua Chen, and Lun-Wei Ku. 2017. Towards a better learning of near-synonyms: Automatically suggesting example sentences via fill in the blank. In Proceedings of the 26th International Conference on World Wide Web Companion, WWW ’17 Companion, page 293–302, Republic and Canton of Geneva, CHE. International World Wide Web Conferences Steering Committee.
    Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. 2020. Neural CRF model for sentence alignment in text simplification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7943–7960, Online. Association for Computational Linguistics.
    Elma Kerz, Daniel Wiechmann, Yu Qiao, Emma Tseng, and Marcus Ströbel. 2021. Automated classification of written proficiency levels on the CEFR-scale through complexity contours and RNNs. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 199–209, Online. Association for Computational Linguistics.
    Tannon Kew and Sarah Ebling. 2022. Target-level sentence simplification as controlled paraphrasing. In Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), pages 28–42, Abu Dhabi, United Arab Emirates (Virtual). Association for Computational Linguistics.
    Nouran Khallaf and Serge Sharoff. 2021. Automatic difficulty classification of Arabic sentences. In Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 105–114, Kyiv, Ukraine (Virtual). Association for Computational Linguistics.
    J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. 1975. Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Technical report, Naval Technical Training Command Millington TN Research Branch.
    Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
    Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. 2017. OpenNMT: Open-source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations, pages 67–72, Vancouver, Canada. Association for Computational Linguistics.
    Klaus Krippendorff. 2011. Computing krippendorff’s alpha-reliability.
    Bruce W. Lee, Yoo Sung Jang, and Jason Lee. 2021. Pushing on text readability assessment: A transformer meets handcrafted linguistic features. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10669–10686, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
    Justin Lee and Sowmya Vajjala. 2022. A neural pairwise ranking model for readability assessment. In Findings of the Association for Computational Linguistics: ACL 2022, pages 3802–3813, Dublin, Ireland. Association for Computational Linguistics.
    Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.
    Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4487–4496, Florence, Italy. Association for Computational Linguistics.
    Xinyu Lu, Jipeng Qiang, Yun Li, Yunhao Yuan, and Yi Zhu. 2021. An unsupervised method for building sentence simplification corpora in multiple languages. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 227–237, Punta Cana, Dominican Republic. Association for Computational Linguistics.
    Mounica Maddela, Fernando Alva-Manchego, and Wei Xu. 2021. Controllable text simplification with explicit paraphrasing. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3536–3553, Online. Association for Computational Linguistics.
    Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. 2020. Zero-shot crosslingual sentence simplification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5109–5126, Online. Association for Computational Linguistics.
    Louis Martin, Angela Fan, Éric de la Clergerie, Antoine Bordes, and Benoît Sagot. 2020a. Multilingual unsupervised sentence simplification. arXiv preprint arXiv:2005.00352v1.
    Louis Martin, Angela Fan, Éric de la Clergerie, Antoine Bordes, and Benoît Sagot. 2020b. MUSS: multilingual unsupervised sentence simplification by mining paraphrases. arXiv preprint arXiv:2005.00352v2.
    Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.
    Shashi Narayan and Claire Gardent. 2014. Hybrid simplification using deep semantics and machine translation. In The 52nd annual meeting of the association for computational linguistics, pages 435–445.
    Shashi Narayan and Claire Gardent. 2015. Unsupervised sentence simplification using deep semantics. arXiv preprint arXiv:1507.08452.
    Subhajit Naskar, Soumya Saha, and Sreeparna Mukherjee. 2019. Text embellishment using attention based encoder-decoder model. In Proceedings of the 4th Workshop on Computational Creativity in Language Generation, pages 28–38, Tokyo, Japan. Association for Computational Linguistics.
    Daiki Nishihara, Tomoyuki Kajiwara, and Yuki Arase. 2019. Controllable text simplification with lexical constraint loss. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 260–266, Florence, Italy. Association for Computational Linguistics.
    Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
    Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.
    Alex Ratner, Braden Hancock, Jared Dunnmon, Roger Goldman, and Christopher Ré. 2018. Snorkel metal: Weak supervision for multi-task learning. In Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, pages 1–4.
    Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.
    Carolina Scarton and Lucia Specia. 2018. Learning simplifications for specific target audiences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 712–718, Melbourne, Australia. Association for Computational Linguistics.
    Yves Scherrer. 2020. Tapaco: A corpus of sentential paraphrases for 73 languages. In Proceedings of the 12th Language Resources and Evaluation Conference. European Language Resources Association (ELRA).
    Veronica Juliana Schmalz and Alessio Brutti. 2021. Automatic assessment of english CEFR levels using BERT embeddings. http://ceur-ws.org/Vol-3033/, 3033.
    Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik. 1997. Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE transactions on Signal Processing, 45(11):2758–2765.
    Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. 2022. Fine-tuned language models are continual learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6107–6122, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
    Burr Settles, Geoffrey T. LaFlair, and Masato Hagiwara. 2020. Machine learning–driven language assessment. Transactions of the Association for Computational Linguistics, 8:247–263. Advaith Siddharthan. 2002. An architecture for a text simplification system. In Language Engineering Conference, 2002. Proceedings, pages 64–71. IEEE.
    Advaith Siddharthan. 2006. Syntactic simplification and text cohesion. Research on Language and Computation, 4:77–109.
    Renliang Sun, Wei Xu, and Xiaojun Wan. 2023. Teaching the pre-trained model to generate simple texts for text simplification. arXiv preprint arXiv:2305.12463.
    Sai Surya, Abhijit Mishra, Anirban Laha, Parag Jain, and Karthik Sankaranarayanan. 2019. Unsupervised neural text simplification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2058–2068, Florence, Italy. Association for Computational Linguistics.
    Kazuki Tani, Ryoya Yuasa, Kazuki Takikawa, Akihiro Tamura, Tomoyuki Kajiwara, Takashi Ninomiya, and Tsuneo Kato. 2022. A benchmark dataset for multi-level complexity-controllable machine translation. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 6744–6752, Marseille, France. European Language Resources Association.
    Teerapaun Tanprasert and David Kauchak. 2021. Flesch-kincaid is not a text simplification evaluation metric. In Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pages 1–14, Online. Association for Computational Linguistics.
    Brian Thompson and Matt Post. 2020. Paraphrase generation as zero-shot multilingual translation: Disentangling semantic similarity from lexical and syntactic diversity. In Proceedings of the Fifth Conference on Machine Translation, pages 561–570, Online. Association for Computational Linguistics.
    Chung-Ting Tsai, Jhih-Jie Chen, Ching-Yu Yang, and Jason S. Chang. 2020. LinggleWrite: a coaching system for essay writing. In Proceedings of the 58th Annua
    Meeting of the Association for Computational Linguistics: System Demonstrations, pages 127–133, Online. Association for Computational Linguistics.
    Satoru Uchida, Shohei Takada, and Yuki Arase. 2018. CEFR-based lexical simplification dataset. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).
    Sowmya Vajjala and Ivana Lučić. 2018. OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 297–304, New Orleans, Louisiana. Association for Computational Linguistics.
    Laura Vásquez-Rodríguez, Pedro-Manuel Cuenca-Jiménez, Sergio MoralesEsquivel, and Fernando Alva-Manchego. 2022. A benchmark for neural readability assessment of texts in Spanish. In Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), pages 188–198, Abu Dhabi, United Arab Emirates (Virtual). Association for Computational Linguistics.
    Vy Vo, Weiqing Wang, and Wray Buntine. 2022. Unsupervised sentence simplification via dependency parsing. arXiv preprint arXiv:2206.12261. Elena Volodina, Dijana Pijetlovic, Ildiko Pilán, and Sofie Johansson Kokkinakis. 2013. Towards a gold standard for swedish CEFR-based ICALL. In Proceedings of the Second Workshop on NLP for Computer-Assisted Language Learning. NEALT Proceedings Series, volume 17.
    Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. 2019. Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319.
    John Wieting and Kevin Gimpel. 2018. ParaNMT-50M: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 451–462, Melbourne, Australia. Association for Computational Linguistics.
    Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
    Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.
    Kristian Woodsend and Mirella Lapata. 2011. Learning to simplify sentences with quasi-synchronous grammar and integer programming. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pages 409–420.
    Sander Wubben, Antal Van Den Bosch, and Emiel Krahmer. 2012. Sentence simplification by monolingual machine translation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1015–1024.
    Menglin Xia, Ekaterina Kochmar, and Ted Briscoe. 2016. Text readability assessment for second language learners. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 12–22, San Diego, CA. Association for Computational Linguistics.
    Wei Xu, Chris Callison-Burch, and Courtney Napoles. 2015. Problems in Current Text Simplification Research: New Data Can Help. Transactions of the Association for Computational Linguistics, 3:283–297.
    Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. 2016. Optimizing statistical machine translation for text simplification. Transactions of the Association for Computational Linguistics, 4:401–415.
    Xingxing Zhang and Mirella Lapata. 2017. Sentence simplification with deep reinforcement learning. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 584–594, Copenhagen, Denmark. Association for Computational Linguistics.
    Xin Zhao. 2022. Leveraging artificial intelligence (ai) technology for english writing: Introducing wordtune as a digital writing assistant for efl writers. RELC Journal, page 00336882221094089.
    Yanbin Zhao, Lu Chen, Zhi Chen, and Kai Yu. 2020. Semi-supervised text simplification with back-translation and asymmetric denoising autoencoders. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 9668–9675.
    Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual treebased translation model for sentence simplification. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 1353–1361, Beijing, China. Coling 2010 Organizing Committee.

    QR CODE