簡易檢索 / 詳目顯示

研究生: 黃詠翔
Huang, Yong-Shiang
論文名稱: 關於KAM理論
On Kolmogorov-Arnold-Moser Theory
指導教授: 陳國璋
Chen, Kuo-Chang
口試委員: 陳國璋
Chen, Kuo-Chang
許正雄
Hsu, Cheng-Hsiung
李明佳
Li, Ming-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 41
中文關鍵詞: KAM 理論擾動理論可積系統阿諾德舌頭小除數
外文關鍵詞: KAM Theory, Perturbation Theory, Integrable System, Arnold Tongue, Small Divisors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們將會透過兩個基本且重要的例子,有關圓上的微分同胚函數與可積漢米爾頓系統,闡明擾動理論中的KAM理論的中心想法如何運作。在過程中我們會見到小除數問題與可微性的損失這兩個問題是在何處產生與如何被克服的。


    We will study two basic and important examples about circle diffeomorphisms and Hamiltonian systems, to clarify the central ideas of the celebrated Kolmogorov-Arnold-Moser Theory in perturbation theory. Two difficulties those pioneers encounter in early 20th century - problems of the small divisor and loss of differentiability, will be revealed and overcame in our procedures also.

    1 Introduction 1 2 Circle Diffeomorphisms: The conjugated problems 3 2.1 Rotation number 3 2.2 Circle Diffeomorphisms 5 2.3 Arnold's Theorem 9 3 KAM Methodology for Arnold's Theorem 12 3.1 Analysis of Linearized Equation 12 3.2 The Newton Method in Banach Spaces 13 4 Analyic Diffeomorphism with Singular Conjugacy 20 4.1 Invariant measures and regularity of conjugacies 20 4.2 A Counterexample 22 5 KAM for Nearly Integrable Hamiltonian Systems 25 5.1 Formulation of the problem 25 5.2 Analysis of the Linearized Equation 29 5.3 The Newton Method in Banach Spaces 32 A The Proofs of Some Estimates in Section 5 36 Reference 41

    [1] V. Arnold, Small denominators. I: Mappings of the circumference onto itself. In AMS Trans-
    lations, 46:213-288, 1965. (Russian original published in 1961).
    [2] L. Chierchia, KAM Lectures, In \Dynamical Systems. Part I: Hamiltonian Systems and Celes-
    tial Mechanics", Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. 1-56.
    Centro di Ricerca Matematica \Ennio De Giorgi" : Proceedings, 2003.
    [3] A. Denjoy, Sur les courbes de nies par les equations di erentielles a la surface du tore, In
    Journal de Mathematiques Pures et Appliquees 11(1932), 333375.
    [4] R. Devaney, An Introduction to Chaotic Dynamical Systems, Second Edition, Addison-Wesley,
    1989.
    [5] M. R. Herman, Sur la conjugaison di erentiable des di eomorphismes du cercle des rotations,
    In Publ. Math. I.H.E.S. 49, 5-233, 1979.
    [6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, 1995.
    [7] Y. Katznelson and D. Ornstein, The di erentiablity of the conjugation of certain di eomor-
    phisms of the circle, In Ergodic Theory and Dynam. Sys. 9, 643-680, 1989.
    [8] K.Khanin and Y. Sinai, A new proof of M. Herman's Theorem, In Commun. Math. Phys. 112,
    89-101, 1987.
    [9] A. N. Kolmogorov, On conservation of conditionally periodic motions under small perturba-
    tions of the hamiltonian, In Dokl. Akad. Nauk, SSSR, 98:527530, 1954
    [10] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer Verlag, 1993.
    [11] J. Milnor, Dynamics: Introductory Lectures, 2001.
    [12] J.Moser, On invariant curves of area-preserving mappings of an annulus, In Nachr. Akad.
    Wiss., Gottingen, Math. Phys. Kl., pages 120, 1962.
    [13] J.Moser, A rapidly convergent interation method, II., In Ann. Scuola Norm. Sup. di Pisa, Ser.
    III, 20:499535, 1966.
    [14] I. Percival and D. Richards,Introduction to dynamics, Cambridge University Press, 1982.
    [15] J. Poschel, A Lecture on the Classical KAM Theorem, In Proceedings of Symposia in Pure
    Mathematics 69, 707{732, 2001.
    [16] D. A. Salamon, The Kolmogorov-Arnold-Moser theorem, FIM-Preprint, ETH-Zurich,(1986),
    available on http://www.math.ethz.ch/ salamon/PREPRINTS/KAM.htm
    [17] K.Schmidt and J.Hawkins, On C2 di eomorphisms of circle which are of type III1. In Invent
    math. 66, 511-518, 1982.
    [18] C. E. Wayne, An Introduction to KAM Theory. In Dynamical Systems and Probabilistic Meth-
    ods in Partial Di erential Equations (Berkeley, CA, 1994), 3-29. Amer. Math. Soc., Provi-
    dence, RI, 1996.
    [19] J.-C. Yoccoz. An introduction to small divisors problems. In From Number Theory to Physics
    (Les Houches, 1989), chapter 14, Springer Verlag, Berlin, 1992

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE