研究生: |
杜立偉 Du, Wei-Li |
---|---|
論文名稱: |
應用電漿佈植氮化及矽覆蓋層以提升具有矽化鍺或鍺通道之金氧半元件電特性研究 Application of plasma implantaion nitridation and Si cap layer to enhance electrical characteristic for MOS devices with SiGe or Ge channel |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 矽化鍺或鍺通道 、電漿佈植氮化 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
為了持續改善元件的性能,金氧半元件之閘極氧化層(SiO2) 的厚度必須繼續縮小,然而極薄的閘極氧化層常伴隨著高的閘極漏電流,為了減少閘極漏電流,high-k 材料已被廣泛使用來取代二氧化矽作為金氧半元件的閘極介電層。然而,high-k 材料仍面臨一些技術性的挑戰例如像charge traping 和遷移率惡化…等問題。
所以為了克服這些因素才有了介面處理,以及通道利用可以提供較高遷移率的含鍺半導體材料,因為純鍺本身對矽而言,載子遷移率電子提升兩倍至於電洞可以提升四倍,對於元件傳輸可以大大得到改善。但是由於鍺的不耐高溫在400℃下產生易揮發的氣體且容易水解,對於元件的電特性會degradation,所以勢必要用其它鈍化方式來抑制鍺擴散並且維持含鍺通道元件的電特性。
為了提升含鍺通道元件特性,本論文首先針對矽鍺虛擬基板方面,以鍺濃度30%為基準,做不同堆疊的變換以期許找到抑制鍺擴散最佳結構,以矽鍺通道而言發現以tri-layer 的形式其漏電流較低graded 的形式其可靠度較佳;至於對純鍺通道而言,在不同矽鍺比例下的緩衝層做探討,但由於矽覆蓋厚度3nm 和介電層厚度2nm 太薄,在後續高溫退火PMA 800℃下無法有效阻擋鍺擴散,所以元件漏電流異常大而且發現隨著鍺的比例上升其情況較嚴重。
為了改善上述純鍺虛擬基板所遇到的問題,接著針對純鍺虛擬基板通道,在介電層厚度4nm 且PMA 700℃下,研究在不同矽覆蓋厚度下做的探討,發現到隨著矽覆蓋厚度上升,元件的基本電性和可靠度SILC 和Stress CV 都得到明顯改善,結果顯示在3nm 矽覆蓋厚度下特性較差而7nm 下為最佳。
最後為了進一部得到提升元件電特性,針對ALD 成長之HfAlO 為介電層,以電漿浸潤式離子佈植(PIII)的方式,從閘極上方摻雜N 至介電層中。從物性分析SIMS 觀察從閘極上方佈植氮離子是可行的,而且結果顯示,針對矽鍺虛擬基板而言在2.5KeV、10 分鐘下元件可靠度得到提升,至於在純鍺虛擬基板方面以3KeV、10 分鐘下元件EOT 可以達到微縮且可靠度也一樣得到改善。
參考文獻
[1] Iternational Technology Roadmap for Semiconductor, 2003 edition.
[2] J. H. Stathis, et al, “Reliability Projection for Ultra-Thin Oxides at Low Voltage”,
IEEE IEDM, Vol. 71, p. 167-170, 1998
[3] A. I. Kingon, J. P.Maria, S. K. Streiffer, “Alternative Dielectrics to Silicon Dioxide for
Memory and Logic Devices”, Nature 406, p. 1032-1038, 2000
[4] M. Houssa, et al,“Electrical Properties of High-k Gate Dielectrics:Challenges, Current
Issues, and Possible Solutions”, Material Science and Enginerring R, p. 37-85, 2006
[5] Jack C.Lee, et al., “Ultra-thin Gate Dielectrics and High-k Dielectrics ”, IEEE EDS
Vanguard Series of Independent Short Course, p. 202, 2001
[6] Nan Lu, “High-Permittivity Dielectrics and High Mobility Semiconductors for Future
Scaled Technology”,The University of Texas at Austin, Ph.D, 2006
[7] S, Saito, et al., “Unified Mobility Model for High-K Gate Stacks”, IEEE IEDM, p.
797-800, 2003
[8] Chee Wee Liu, et al.,“Mobility Enhancement Technology”, IEEE Circuit & Devices
Magazine, 2005
[9] B. M. Haugerud, et al., “Mechanically Induced Strain Enhancement of
Metal–Oxide–Semiconductor Field Effect Transistors”, J.Appl.Phys , Vol. 94, No. 6,
2003
[10] R. People and J.C Bean, “Calculation of Critical Layer Thickness Versus Lattice
Mismatch for GexSi1-x/Si Strained-layer Heterostructures”, App.Phys.Lett, Vol. 47, p.
322, 1985
[11] R. Zhang,“Electronic Defect Characterization of Strained-Si/SiGe/Si Heterostructure ”,
North Carolina State University, Ph. D., 2006
[12] http://www.sp.phy.cam.ac.uk/~SiGe/PhDs%20in%20SiGe%20Research%20at%20Cam
108
bridge.html
[13] Weiping Bai, et al,“The Electrical Properties of HfO2 Dielectric on Germanium and
the Substrate Doping Effect”, IEEE Trans. Electron Devices, Vol. 53, No. 10, 2006
[14] C. Claeys, et al.,“Processing and Defect Control in Advanced Ge Technologies ”,
IEEE IEDST, 2007
[15] Koji Kita, et al.,“ Direct Evidence of GeO Volatilization from GeO2/Ge and Impact
of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics”,
J.J.Appl.Phys, Vol. 47, p. 2349-2353, 2008
[16] T. Takahashi, et al.,“ Proof of Ge Interface Concepts for Metal/High-k/Ge CMOS”,
IEEE, p. 697-700, 2007
[17] S. Takagi, et al., “Gate Dielectric Formation and MIS Interface Characterization on
Ge ”, Microelectronic Engineering, Vol. 84, p. 2314-2319, 2007
[18] Yoshiki Kamata,“High-K/Ge MOSFETs for Future Nanoelectronics”, Materialstoday,
Vol. 11, 2008
[19] Sachin Joshi,et al., “ Improved Ge Surface Passivation With Ultrathin SiOX Enabling
High-Mobility Surface Channel PMOSFETs Featuring a HfSiO/WN Gate Stack”,
IEEE Electron Device Letters, Vol. 28, p. 308-311, 2007
[20] W. P. Bai, et al., “ Si Interlayer Passivation on Germanium MOS Capacitors With
High-K Dielectric and Metal Gate ”, IEEE Electron Device Letters, Vol. 26, p.378-380,
2005
[21] S. Petitdidier, et al.,“Growth Mechanism and Characterization of Chemical Oxide Films
Produced in Peroxide Mixtures on Si(100) Surfaces”, Thin Solid Films,Vol. 476, p.
51-58, 2005
[22] D.C. Houghton,“ Strain Relaxation Kinetics In SiGe/Si Heterostructures ”, J. Appl.
Phys, Vol. 70, p. 2136-2151, 1991
109
[23] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
[24] H.-S. P. Wong,“Beyond the Conventional Transistor”, IBM J. Res. & Dev, Vol. 46, p.
133-168, 2002
[25] Laura M. Giovane, et al., “ Correlation Between Leakage Current Density and
Threading Dislocation Density in SiGe p-i-n Diodes Grown on Relaxed Graded Buffer
Layers” , Appl. Phys. Lett, Vol .78, No. 4, 2001
[26] E. A.Fitzgerald, et al., “Relaxed GeSi Structure for III-V Intergration With Si and
High Mobility 2-D Electron Gases in Si”, J. Vac. Sci. Technol B, Vol. 10, p.
1807-1819, 1992
[27] D. A. Antoniadis, et al.,“Continuous MOSFET Performance Increase with Device
Scaling: The Role of Strain and Channel Material Innovations”, IBM J. Res. & Dev,
Vol. 50, p.363-376, 2006
[28] 林宏年, et al., 奈米通訊, 交通大學電子所, 第12 卷第一期, p.44-49
[29] S.K. Ray, et al.,“Ultrathin HfO2 Gate Dielectrics on Partially Strain Compensated
SiGeC/Si Heterostructure”, Materials Science in Semiconductor Processing, Vol. 7, p.
203-208, 2004
[30] H. J. Osten and E. Bugiel.,“ Relaxed SiGe/SiGeC Buffer Structures with Low
Threading Dislocation Density”, Appl. Phys. Lett., Vol. 70, 1997
[31] E.A. Fitzgerald et al.,“Dislocations in Relaxed SiGe/Si Heterostructures”, Phys. Stat.
Sol. (a), Vol. 171, p.227-238, 1999
[32] Srikanth B. Samavedam and E. A. Fitzgerald., “ Novel Dislocation Structure and
Surface Morphology Effects in Relaxed Ge/Si-Ge(graded)/Si Structures”, J. Appl. Phys.,
Vol. 81, p. 3108-3116, 1997
[33] Tae-Sik Yoon, et al,“Surface Roughness and Dislocation Distribution in
Compositionally Graded Relaxed SiGe Buffer Layer with Inserted-Strained Si Layers ”,
Appl. Phys. Lett., Vol. 87, p.012104, 2005
110
[34] S. Gupta, M.L. Lee,et al., “Improved Hole Mobilities and Thermal Stability in a
Strained-Si/Strained-Si1-yGey/Strained-Si Heterostructure Grown on a Relaxed Si1-xGex
Buffer” Emergency Technologies, p. 61, 2005
[35] Minjoo L. Lee. et al,“Strained Si, SiGe , and Ge channels for high-mobility
metal-oxide-semiconductor field-effect transistors ”, J. Appl. Phys. , Vol. 97, p. 011101,
2005
[36] Y. H. Xie. et al.,“Semiconductor Surface Roughness”, Physical Review Letters, Vol. 73,
No. 22, 1994
[37] P. Batude, et al.,“Insights on Fundamental Mechanisms Impacting Ge Metal Oxide
Semiconductor Capacitors with High-k/Metal Gate Stacks”, J. Appl. Phys., Vol. 102, p.
034514, 2007
[38] S. Maikap, et al.,“Electrical Characterization of Si/Si1-XGeX/Si Quantum Well
Heterostructures Using a MOS Capacitor”, Solid-State Electronics, Vol. 44, p.
1029-1034, 2000
[39] S. Maikap, et al.,“Electrical characterization of ultra-thin gate oxides on Si/Si1−x−yGexCy
/Si quantum well heterostructures”, Semicond. Sci. Technol., Vol.15, p. 761-765, 2000
[40] X. L. Yuan, et al., “Study of Dislocations in Strained-Si/Si0.8Ge0.2 Heterostructures by
EBIC, TEM and Etching Techniques ”, Eur. Phys. J. Appl. Phys., Vol. 27, p. 337-340,
2004
[41] Erich Kasper et al.,“New virtual substrate concept for vertical MOS transistors”, Thin
Solid Films, Vol. 336, p. 319-322, 1998
[42] Chia Ching Yeo, et al.,“Electron Mobility Enhancement Using Ultrathin Pure Ge on Si
Substrate”, IEEE Electron Device Letters, Vol. 26, No. 10, p. 761-763, 2005
[43] Goutam Kumar Dalapati, et al., “ Impact of Strained-Si Thickness and Ge
Out-Diffusion on Gate Oxide Qualityfor Strained-Si Surface Channel n-MOSFETs” ,
IEEE Trans. Electron Devices, Vol. 53, No. 5, 2006
111
[44] Pei-Jer Tzeng, et al.,“Physical and Reliability Characteristics of Hf-based Gate
Dielectrics on Strained-Si1-xGex MOS Devices” IEEE Trans. Device and Materials
Reliability, Vol. 5, No. 2, p. 168-176, 2005
[45] C. W. Liu, et al.,“SiGe/Si Heterostructures”, Encyclopedia of Nanoscience and
Nanotechnology, Vol. 9, p. 775-792, 2004
[46] Qing-Qing Sun, et al.,“Impact of germanium related defects on electrical performance
of hafnium oxide”, Appl. Phys. Lett., Vol. 92 , p. 102908 , 2008
[47] Ook Sang Yoo, et al.,“Effect of Si Capping Layer on the Interface Quality and NBTI of
High Mobility Channel Ge-on-Si p-MOSFETs”, Microelectronic Engineering, 2008
[48] Young-Joo Song, et al.,“Effects of Si-cap Layer Thinning and Ge Segregation on the
Characteristics of Si/SiGe/Si Heterostructure p-MOSFETs”, Solid-State Electronics,
Vol.46, p. 1983-1989, 2002
[49] P. Batude, et al.,“In-depth Investigation of the Mechanisms Impacting C-V/G-V
Characteristics of Ge/GeON/HfO2/TiN Stacks by Electrical Modeling”,
Microelectronic Engineering, Vol. 84, p. 2320-2323, 2007
[50] D. Misra, et al.,“Interface Characterization of High-k Dielectrics on Ge Substrates”,
Materials Science in Semiconductor Processing, Vol. 9, p.741-748, 2006
[51] R Loo, et al., “Selective Epitaxial Si/SiGe Growth for VT Shift Adjustment in High k
pMOS Devices”, Semicond. Sci. Technol, Vol.22, p. s110-s113, 2007
[52] Naoharu Sugiyama, et al.,“Variation of Threshold Voltage in Strained Si
Metal–Oxide–Semiconductor Field-Effect Transistors Induced by Non-uniform Strain
Distribution in Strained-Si Channels on Silicon–Germanium-on-Insulator Substrates”, J.
J. Appl. Phys., Vol. 47, p. 4403-4407, 2008
[53] Toshinori Numata, et al,“Control of Threshold-Voltage and Short-Channel Effects in
Ultrathin Strained-SOI CMOS Devices”, IEEE Trans. Electron Devices, Vol. 52,
p.1780-1786, 2005
112
[54] Qingchun Zhang, et al.,“Germanium Incorporation in HfO2Dielectric on Germanium
Substrate”, Journal of The Electrochemical Society, Vol. 153, p. G207-G210, 2006
[55] Satoshi Kamiyama, et al.,“Improvement in the uniformity and the thermal stability of
Hf-silicate gate dielectric by plasma-nitridation”, IWGI, Tokyo, p. 46, 2003
[56] Chin-Lung Cheng, et al.,“Current-conduction and charge trapping properties due to
bulk nitrogen in HfOxNy gate dielectric of metal-oxide-semiconductor devices”, Appl.
Phys. Lett., Vol. 86, p. 212902, 2005
[57] Motoyuki Sato, et al.,“Performance and Reliability Improvement of HfSiON
Field-Effect Transistor with Low Hafnium Concentration Cap Layer Formed by Metal
Organic Chemical Vapor Deposition with Diethylsilane”, J. J. Appl. Phys., Vol. 47 ,
p.879-884, 2003
[58] Kazuyoshi Torii, et al., IEEE EDL, Vol. 53, p. 323, 2006
[59] 蔡坤宏,“應用氮化閘鋯鋁氧化介電層及矽鍺通道以提升金氧半元件電
特性之研究”,國立清華大學工程與系統科學系,2008
[60] 莊惠淇,“利用閘堆疊式介電層及界面工程加強金氧半元件電性之研
究”,國立清華大學工程與系統科學系,2007
[61] H. J. Cho, et al., “High-K Dielectrics and MOSFET Characteristics”, IEEE IEDM, 2003
[62] S. J. Wang, et al., “Effect of Nitrogen Incorporation on the Electronic Structure and
Thermal Stability of HfO2 Gate Dielectric ”, Appl. Phys. Lett., Vol. 88, p.192103, 2006
[63] M. S. Akbar, et al., “Effect of NH3 Surface Nitridation Temperature on Mobility of
Ultrathin Atomic Layer Deposited HfO2”, Appl. Phys. Lett., Vol. 86, p. 032906 ,2005
[64] Renee Nieh, et al., “Evaluation of Silicon Surface Nitridation Effects on Ultra-thin ZrO2
Gate Dielectrics”, Appl. Phys. Lett., Vol. 81, p.1663, 2002
[65] L. Wang, K. Xue, et al., “Effects of Plasma Immersion Ion Nitridation on Dielectric
113
Properties of HfO2”, Appl. Phys. Lett., Vol. 90, p.122901, 2007
[66] Mukesh Kumar, et al., “Semiconductor Applications of Plasma Immersion Ion
Implantation Technology”, Bull. Mater. Sci., Vol. 25, No. 6, p.549-551, 2002
[67] N.W. Cheung, “Plasma Immersion Ion Implantation for Semiconductor Processing”,
Materials Chemistry and Physics, Vol.46, p.132-139, 1996
[68] P. K. Chu, et al., “Principles and Characteristics of a New Generation Plasma
Immersion Ion Implanter ”, Rev. Sci. Instrum, Vol. 68, p.1866-1874, 1997
[69] 蔡文發,“電漿源原理與應用之介紹”, 物理雙月刊第二十八卷二期, 2006
[70] P. Batude, et al., “Insights on Fundamental Mechanisms Impacting Ge Metal Oxide
Semiconductor Capacitors with high-k/metal Gate Stacks”, J. Appl. Phys., Vol. 102, p.
034514, 2007
[71] Sun-Ghil Lee, et al., “A Comparative Analysis of Thermal Gate Oxide on Strained
Si/Relaxed SiGe Layer for Reliability Prediction of Strained Si MOSFETs”, Materials
Science in Semiconductor Processing, Vol. 8, p.215-218, 2005
[72] N. Umezawa, et al., “ First-principles Studies of the Intrinsic Effect of Nitrogen Atoms
on Reduction in Gate Leakage Current Through Hf-based High-k Dielectrics”, Appl.
Phys. Lett., Vol. 86, p. 143507, 2005
[73] K. Xiong,et al., “Passivation of Oxygen Vacancy States in HfO2 by Nitrogen ”, J. Appl.
Phys., Vol. 99, p. 044105, 2006
[74] G. Shang,et al., “Stability and Band Offsets of Nitrogenated High-Dielectric-Constant
Gate Oxides”, Appl. Phys. Lett., Vol. 84, No. 1, p.106-108, 2004