研究生: |
謝繕如 Shan Ju,Hsieh |
---|---|
論文名稱: |
一維氧化鋅奈米柱成長與特性研究 Fabrication and properties of one dimensional ZnO nanorods (NRs) |
指導教授: |
林志明 博士
Chin-Ming Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 一維奈米柱 、奈米結構 、氧化鋅 |
外文關鍵詞: | 1-D nanorods, nanostructures, ZnO |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文以一維氧化鋅奈米柱成長與特性研究為主題。第一部份為經由VLS機制成長氧化鋅奈米柱,並探討催化金屬:金,的尺寸對奈米柱成長的影響。第二部份直接在sapphire基板上成長氧化鋅奈米柱,不使用VLS機制。
在Si(100)基板上鍍金為催化金屬,使用鋅粉為反應物,在高溫爐中成長氧化鋅奈米結構,得到奈米柱(nanorods)、奈米針(needle-like rods)、奈米帶(nanoribbons)、奈米梳(nanocombs)、奈米牆(nanowalls),並成功調整奈米柱長度。以預退火方式加大金的團聚(cluster)尺寸及間距變疏,探討氧化鋅奈米柱成長尺寸的相關性,以及催化金屬對奈米柱的成長定位。嘗試不同的基板來成長氧化鋅奈米柱,m-plane sapphire 、c-plane sapphire上可得到準直向上成長的氧化鋅奈米柱,VLS機制主導氧化鋅奈米柱成長遠大於基板效應,兩者XRD量測只出現氧化鋅(002)繞射峰,在室溫PL量測中有很強的NBE,缺陷綠光放射很弱。ZnO/ m -plane sapphire鍍金後再進高溫爐成長氧化鋅,得到奈米梳、側向柱狀形貌、奈米帶。
直接將sapphire基板在高溫爐中成功長出氧化鋅奈米柱,不經由鍍金的VLS機制成長。獨特有趣的奈米柱成長方向在m -plane sapphire 、c-plane sapphire上被發現。氧化鋅奈米柱與m -plane sapphire基板之間因為晶格不匹配而造成的磊晶效應,成長出兩組方向的奈米柱:左向、右向,且長晶速度不同。在c-plane sapphire上還有向上成長的奈米柱。XRD量測訊號也比VLS機制成長的奈米柱豐富了許多。而PL圖譜NBE則明顯比有鍍金成長的奈米柱還強,紫外放射強度更強。ZnO/ m -plane sapphire成長得氧化鋅奈米草。
VLS機制成長氧化鋅可得到(002)方向良好結晶性質,準直向上成長氧化鋅奈米柱,而不受基板效應,不論在Si(100)、m -plane sapphire 、c-plane sapphire上皆相同。成功在m -plane sapphire 、c-plane sapphire上成長氧化鋅奈米柱,不鍍金,即不使用VLS機制,且得到更強的紫外放射。
Abstract
Fabrication and properties of one-dimensional nanorods (NRs) were studied in this research. At first, the ZnO NRs were fabricated via vapor-liquid-solid (VLS) mechanism. The influence of the sizes of catalyst on the growth of ZnO NRs would be discussed. Secondly, without VLS mechanism ZnO NRs have been successfully synthesized on m-plane sapphire and c-plane sapphire substrates.
The Au-coated Si substrates and zinc powders were placed inside a furnace for growth of ZnO nanostructures. We got several different nanostructures, such as nanorods, needle-like rods, nanoribbons, nanocombs and nanowalls. The length of nanorods can be controlled. By the method of pre-annealing Au-coated Si substrates, the sizes of Au clusters become larger and the density had been decreased. We discussed the correlation between the diameter of ZnO NRs and the size, position of catalyst metal. Vertically well-aligned ZnO NRs were grown on m-plane sapphire and c-plane sapphire substrates. Compare with the lattice mismatch effect, the VLS mechanism was the main factor to affect the growth of ZnO NRs. The X-ray pattern showed only the (002) reflection peak of ZnO NRs. From the PL spectra measured at room temperature, a strong peak of the near band edge emission and also a very weak green emission associated with defects were observed. The m-plane sapphire substrate grown ZnO film by ALD and coated Au catalyst got nanocombs, lateral-rods and nanoribbons after the growth of the furnace.
Moreover, ZnO NRs were synthesized on sapphire substrates without VLS mechanism. The unique growth directions of NRs have been observed on m-plane sapphire and c-plane sapphire substrates. There were two distinct sets of NRs on m-plane sapphire: some of them pointed to the right and some of them pointed to the left off the substrate plane. The two sets of NRs had different growth rate. Except to those two sets, the third kind of distinct set of NRs, perpendicular to the substrate, was found on c-plane sapphire substrates. The X-ray diffraction pattern showed (100), (002), (103) peaks when NRs were deposited on m-plane sapphire and (002), (101) peaks of NRs were found with c-plane sapphire without catalyst metal. The photoluminescence intensity of NRs growth without catalyst showed 2~3 times higher than catalyst method. The m-plane sapphire substrate grown ZnO film by ALD without coated Au catalyst got ZnO nanograss after the growth of the furnace.
The ZnO nanostructures can be got through change the growth conditions. Fabricated NRs with catalyst showed highly preferred (002) orientation via VLS mechanism no matter what kind of substrates, such as Si(100), m-plane sapphire and c-plane sapphire substrates. ZnO NRs have been successfully grown on sapphire without VLS mechanism by modulated growth processes and showed better PL efficiency.
參考文獻
【1】http://www.zyvex.com/nanotech/feynman.html。
【2】Kubo, R.J. Phys. SOC Japan ,17, 975(1962).
【3】Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. Phys.Rev. Lett., 50, 120(1982)
【4】Baibich, M. N. et al. Phys. Rev.Lett., 61, 2472-2475( 1988).
【5】Iijima, S. Nature, 354, 56-58( 1991).
【6】Peidong Yang, Haoquan Yan, Samuel Mao,…Adv. Funct. Mater., 12 , No.5 , May(2002)
【7】Lori E. Greene, Benjamin D. Yuhas, Matt Law, David Zitoun, and Peidong Yang ,Inorganic Chemistry, Vol. 45, No. 19(2006)
【8】JOSHUA GOLDBERGER, RONG FAN, AND PEIDONG YANG. Acc. Chem. Res.39, 239-248(2006)
【9】 Sanghyun Ju, Kangho Lee, and David B. Janes, ung-Han Yoon, Antonio Facchetti, and Tobin J. Marks, Nano Lett., Vol. 5, No. 11, (2005)
【10】Yefan Chen, Darren Bagnall, Takafumi Yao, Materials Science and Engineering ,B75, 190–198(2000)
【11】Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao,J. Appl. Phys., Vol. 84, No. 7, 1 October (1998)
【12】D. M. Bagnall, Y. F. Chen, Z. Zhu, and T. Yao, D. M. Bagnall, Y. F. Chen, Z. Zhu, and T. Yao,Appl. Phys. Lett. 70 (17), 28 April (1997)
【13】Z. K. Tang, G. K. L. Wong, and P. Yu, M. Kawasaki, A. Ohtomo, and H. Koinuma, Y. Segawa ,Appl. Phys. Lett., Vol. 72, No. 25, 22 June(1998)
【14】T. Makino and Y. Segawa M. Kawasaki, A. Ohtomo, R. Shiroki, and K. Tamura T. Yasudac H. Koinuma, Appl. Phys. Lett., Vol. 78, No. 9, 26 February (2001)
【15】 H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns , J. Appl. Phys. 76 (3), 1 August (1994)
【16】 M. Law, H. Yan, S. Mao, R. Russo, J. Johonson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Adv. Funct. Mater. 12,323(2002)
【17】 Yung-Yu Chen1, Tsung-TsongWu and Tsung-Tai Chou ,J. Phys. D: Appl. Phys. 37 120(2004)
【18】 Ying Chen, Gaurav Saraf, and Yicheng Lua , Leszek S. Wielunski , Theo Siegrist , J. Vac. Sci. Technol. A, Vol. 25, No. 4, Jul/Aug (2007)
【19】 Tsung-Tsong Wu and Wei-Shan Wang ,J. Appl. Phys., Vol. 96, No. 9, 1 November (2004)
【20】 Zhiyong Fan and Jia G. Lu "Zinc Oxide Nanostructures: Synthesis and Properties "
【21】M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett., Vol. 61, No. 17, 26 October 1992
【22】Morales, A. M. & Lieber, C. M. ,Science 279,208-211 (1998).
【23】M. H. Huang et al., Adv. Mater. 13,113-115 (2002)
【24】B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa,
Y. Kashiwaba and K. Haga , Nanotechnology 15 S382–S388 (2004)
【25】H. D. Sun, T. Makino, N. T. Tuan, and Y. Segawa, M. Kawasaki, A. Ohtomo, and K. Tamura, H. Koinuma, Appl. Phys. Lett., Vol. 78, No. 17, 23 April 2001
【26】N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, and M. Grundmann , G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar , J. Appl. Phys., Vol. 93, No. 1, 1 January 2003
【27】R. S. Wagner and W. C. Ellis, APPLIED PHYSICS LETTERS, Volume 4, Number 5, 1 March 1964
【28】Yiying Wu and Peidong Yang , J. Am. Chem. Soc. 123, 3165-3166 (2001)
【29】Hou T. Ng, Jun Li, Michael K. Smith, Pho Nguyen, Alan Cassell, Jie Han, M. Meyyappan , SCIENCE VOL 300 23 MAY (2003)
【30】Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, and Peidong Yang , Adv. Mater. 13, No. 2, January 16 (2001)
【31】Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,
Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang , SCIENCE VOL 292 8 JUNE 2001
【32】W. I. Park, D. H. Kim, S.-W. Jung, and Gyu-Chul Yi , Appl. Phys. Lett., Vol. 80, No. 22, 3 June 2002
【33】Jason B. Baxter, Eray S. Aydil , Journal of Crystal Growth 274 407–411 (2005)
【34】Hou Tee Ng, Bin Chen, Jun Li, Jie Han, and M. Meyyappan, J. Wu, S. X. Li, and E. E. Haller, Appl. Phys. Lett., Vol. 82, No. 13, 31 March 2003
【35】B. P. Zhang, N. T. Binh, and Y. Segawa, Y. Kashiwaba and K. Haga, Appl. Phys. Lett., Vol. 84, No. 4, 26 January 2004
【36】X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen,
W. Xu, X.W. Fan, X.G. Kong, Journal of Luminescence 99 149–154 (2002)
【37】Periasamy Viswanathamurthi, Narayan Bhattarai, Hak Yong Kim and Douk Rae Lee , Nanotechnology 15 320–323 (2004)
【38】F. Liua, P.J. Caoa, H.R. Zhanga, C.M. Shena, Z. Wanga, J.Q. Lia, H.J. Gao, Journal of Crystal Growth 274 126–131 (2005)
【39】X. L. Wu, G. G. Siu and C. L. Fu, H. C. Ong, Appl. Phys. Lett., Vol. 78, No. 16, 16 April 2001
【40】Anderson Janotti and Chris G. Van de Walle , APPLIED PHYSICS LETTERS 87, 122102 (2005)
【41】A. Zubiagaa , J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez and V. Muñoz-Sanjosé, JOURNAL OF APPLIED PHYSICS 99, 053516 2006
【42】Y. W. Heo, D. P. Nortona and S. J. Pearton, JOURNAL OF APPLIED PHYSICS 98, 073502 2005
【43】S. B. Zhang, S.-H. Wei, and Alex Zunger, PHYSICAL REVIEW B, VOLUME 63, 075205
【44】K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79 (10), 15 May 1996
【45】Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett., Vol. 79, No. 7, 13 August 2001
【46】G. Du, J. Wang, X. Wang, X. Jiang, S. Yang, Y. Ma, W. Yan, D. Gao, X. Liu, H. Cao, J. Xu, R. P. H. Chang, Vacuum, 69 (2003) 473
【47】S. Bethke, H. Pan, B. W. Wessels, Appl. Phys. Lett., 52 (1987) 138