研究生: |
陳佳威 Chen, Chia-Wei |
---|---|
論文名稱: |
純天然植物餐具之碳足跡與碳費成本影響之研究-以蒲草吸管為例 A Study of Carbon Footprint and Cost for Natural Plant-based Tableware - Lepironia Articulata Grass Straw as an Example |
指導教授: |
林東盈
Lin, Dung-Ying |
口試委員: |
賴禎秀
Laih, Chen-Hsiu 沈宗緯 Shen, Chung-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 生命週期評估 、永續 、生物可分解 、免洗吸管 、家庭堆肥 |
外文關鍵詞: | Life Cycle Assessment, Sustainable, Biodegradable, Disposable, home compostable |
相關次數: | 點閱:47 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠吸管被大眾廣泛應用於飲用飲品中,並已被證明是餐廳的有用工具。另一方面,過度使用會產生大量的塑膠垃圾,造成對環境有害,並可能傷害瀕臨滅絕的物種。隨著近年來環保意識抬頭,市面上也有業者陸續提出塑膠吸管的替代品,例如:紙吸管。然而,當歐盟決定於2026年開始啟動碳邊境調整機制 (Carbon Border Adjustment Mechanism, CBAM)後,難保未來這些塑膠吸管替代品也會被列入管制範圍的可能性,因而更加墊高了吸管的採購成本。
個案為一間以蒲草作為原料的吸管製造公司,從原料端的蒲草種植到成品端的吸管生產皆完全由該公司負責。透過本次研究,針對蒲草吸管進行了比較生命週期評估(Life Cycle Assessment, LCA)從搖籃到大門的整個過程,旨在估算該產品的潛在碳排。
透過計算生命週期評估來預測未來歐盟邊境調整機制的定價將導致蒲草吸管在歐盟市場上具有競爭力。研究結果顯示,歐盟課徵碳邊境調整機制後,單位蒲草吸管碳排放量為1.295g CO₂e、單位碳費成本為1.17 x 10-4 美元/支。比較市售常見的塑膠吸管與紙吸管,單位塑膠吸管碳排放量為1.45g CO₂e、單位碳費成本為1.30 x 10-4 美元/支、相對單位蒲草吸管之碳排放增加率11.54 %;單位紙吸管碳排放量為1.38g CO₂e、單位碳費成本為1.24 x 10-4 美元/支、相對單位蒲草吸管之碳排放增加率6.15 %,單位蒲草吸管之碳排放量皆優於兩者。蒲草吸管未來須加速進行在土壤碳匯和植物碳匯的方法學研究及認證上,擴大負碳效益,降低單位蒲草吸管碳排放量,使其更具有好的商業優勢。藉此,我們更能有效率地取代市面上相對碳排較高的其他材料吸管,使得減少更多的溫室氣體排放。
最後,蒲草作為具有可生物分解的家庭堆肥生態吸管,可以減少海洋廢棄物的危害和減少海洋與陸地上的微塑料,實現真正的永續發展目標。
Plastic straws have been widely used by the public for consuming beverages and have proven to be useful tools for restaurants. However, excessive use results in a significant amount of plastic waste, harming the environment and potentially endangering species. With the rise in environmental awareness in recent years, businesses have been introducing alternatives to plastic straws, such as paper straws. However, with the European Union's (EU) decision to implement the Carbon Border Adjustment Mechanism (CBAM) starting in 2026, there's a possibility that these plastic straw alternatives might also fall under regulatory scrutiny, thus further increasing the procurement cost of straws.
As a case study, a company manufacturing straws using a kind of grass called, Lepironia articulate, as the raw material handles the entire process from grass cultivation to straw production. Through this study, a comparative Life Cycle Assessment (LCA) was conducted for three common types of straws (paper, polylactic acid (PLA), and Lepironia articulata) to quantify their potential carbon emissions throughout their life cycle, aiming to predict the competitiveness of grass straws in the EU market under the future pricing adjustments of the CBAM.
By calculating the LCA, we can predict that the future pricing of the EU CBAM will make grass straws competitive in the EU market. The study shows that after the EU imposes the CBAM, the carbon emissions per unit grass straw is 1.295 g CO₂e, the carbon cost per unit straw is $1.17 x 10⁻⁴. In comparison, plastic straw carbon emissions per unit is 1.45 g CO₂e, the carbon cost per unit straw is $1.30 x 10⁻⁴, 11.54% higher carbon emissions than grass straws; paper straw carbon emissions per unit is 1.38 g CO₂e, the carbon cost per unit straw $1.24 x 10⁻⁴, 6.15% higher carbon emissions than grass straws.
In the future, grass straws must expedite research and certification in methodologies related to soil carbon sequestration and plant carbon sinks. Expanding their negative carbon benefits and reducing the carbon emissions per unit of grass straw will further enhance their commercial advantage. By doing so, we can more effectively replace other high-carbon-emission materials used for straws, contributing to greater reductions in greenhouse gas emissions. Grass straws, as biodegradable and home compostable eco-friendly alternatives, can reduce the harm of marine debris and decrease micro plastics in both oceans and land, contributing to the achievement of genuine sustainable development goals.
中文文獻
1.劉宜君 (2019),生命週期評估概念在公共政策應用之探討,國土及公共治理季刊,第七卷,第三期。
2.黃承澤 (2024),預鑄與場鑄植草磚之碳足跡與環境成本影響研究-以金門停車格地坪工程為例,國立金門大學碩士論文。
3.張國一 (2015),廢塑膠再製成再生塑膠粒之碳足跡評估,明新科技大學碩士論文。
4.盧明俊 (2022),不同材質螺絲碳足跡評估比較分析-以台中市某工廠為例,國立中興大學碩士論文。
5.SGS台灣檢驗科技股份有限公司 (2024),SGS產品碳足跡盤查加值服務-與企業一起推動永續未來。
6.經濟部發展署 (2024),製造業產品環境足跡與資源永續資訊專區-產品碳足跡。
7.台灣搖籃到搖籃平台 (2018),搖籃到搖籃(C2C)設計概念,德商搖籃到搖籃設計顧問有限公司台灣分公司。
8.陳一昌、許書耕、胡智超、許佩倩、黃榮堯、曠永銓、黃琬淇、周武雄 (2012),交通運輸工程碳排放量推估模型建立與效益分析之研究,交通部運輸研究所。
9.許凱鈞 (2015),透水性鋪面碳足跡系統建置之研擬,國立中央大學土木工程學系碩士論文。
10.經濟部國際貿易署 (2021),國際鏈結之企業碳足跡指引,經濟部國際貿易署。
11.經濟部工業技術研究院 (2022),碳足跡與碳盤查的差異,經濟部產業發展署。
12.經濟部產業發展署 (2022),製造業環境足跡與資源永續資訊專區,經濟部產業發展署。
13.全國法規資料庫 (2023),溫室氣體排放量盤查登錄及查驗管理辦法,環境部氣候變遷目。
14.劉建宏 (2010),盤查不求人-校園溫室氣體自主盤查管理手冊,教育部。
15.楊宗翰 (2022),以現行主要碳定價制度論台灣碳定價制度之發展,東吳大學國際經營與貿易學系。
16.世界銀行 (2024),2024年碳定價現況與趨勢,世界銀行。
17.世界銀行 (2024),世界銀行碳定價報告,世界銀行。
18.榤構科技 (2022),碳定價、碳交易、碳中和、淨零、碳關稅、碳補捉、碳預算…一次搞懂16個碳名詞,榤構科技。
19.世新大學 (2021),一張圖搞懂碳交易,世新大學「二氧化碳與能源發展科普推廣計畫」。
20.劉仲恩 (2021),碳抵換示意圖,CSR@天下。
21.德國萊因TÜV Rheinland (2022),何謂碳定價,德國萊因TÜV Rheinland。
22.古珮嫆 (2020),碳稅作為減緩氣候變遷財政工具之研究,國立中正大學財經法律系。
23.吳文忠 (2022),新加坡將自2024年1月1日起調高碳稅稅率至每公噸25星幣,駐新加坡台北代表處經濟組。
24.朱柔若譯 (2000),社會研究方法:質化與量化取向,揚智文化。
25.溫室氣體排放量盤查作業指引 (2024),碳排放係數法示意圖,環境部。
26.溫室氣體排放量盤查作業指引 (2024),溫室氣體排放量盤查作業步驟,環境部。
27.環境部 (2024),溫室氣體排放量盤查登錄及查驗管理辦法,環境部。
28.環境部 (2023),氣候變遷因應法,環境部。
29.環境部 (2022),溫室氣體盤查涵蓋範疇,環境部。
30.鄔家琪 (2022),蒲草種子繁殖與肥培管理之研究,宜蘭大學生物資源學刊(2022) 18: 47-59。
英文文獻
1.Rothwell, D. R., Oude Elferink, A. G., Scott, K. N., & Stephens, T. (Eds.). (2017). Science and the international regulation of marine pollution. In Oxford handbook of the law of the sea (pp. 516–535). Oxford University Press.
2.Rochman, C. M., Cook, A.-M., & Koelmans, A. A. (2016). Plastic debris and policy: Using current scientific understanding to invoke positive change. Environmental Toxicology and Chemistry, 35(7), 1617–1626.
3.Pettipas, S., Bernier, M., & Walker, T. R. (2016). A Canadian policy framework to mitigate plastic marine pollution. Marine Policy, 68(1), 117–122.
4.Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
5.Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.
6.Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L. A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1), Article 11452.
7.The World Bank. (2017). World development indicators.
8.Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications.
9.Zanghelini, G. M., Cherubini, E., Dias, R., Kabe, Y. H. O., & Delgado, J. J. S. (2021). Comparative life cycle assessment of drinking straws in Brazil. Journal of Cleaner Production, 276, 123070.
10.Vieira, J. S. C., Marques, M. R. C., Nazareth, M. C., Jimenez, P. C., & Castro, Í. B. (2020). On replacing single-use plastic with so-called biodegradable ones: The case with straws. Environmental Science and Policy, 106, 177–181.
11.Moy, C.-H., Tan, L.-S., Shoparwe, N. F., Mohd Shariff, A., & Tan, J. (2021). Comparative study of a life cycle assessment for bio-plastic straws and paper straws: Malaysia’s perspective. MDPI, 9(6), 1007.
12.Roy, P., Ashton, L., Wang, T., Corradini, M. G., Fraser, E. D. G., Thimmanagari, M., Tiessan, M., Bali, A., Saharan, K. M., Mohanty, A. K., & Misra, M. (2021). Evolution of drinking straws and their environmental, economic and societal implications. Journal of Cleaner Production, 316, 128234.
13.Chang, L., & Tan, J. (2021). An integrated sustainability assessment of drinking straws. Journal of Environmental Chemical Engineering, 9(1), 105527.
14.Gao, A. L., & Wan, Y. (2022). Life cycle assessment of environmental impact of disposable drinking straws: A trade-off analysis with marine litter in the United States. Science of the Total Environment, 817, 153016.
15.Rai, R., Ranjan, R., Kant, C., & Dhar, P. (2023). Biodegradable, eco-friendly, and hydrophobic drinking straws based on delignified phosphorylated bamboo-gelatin composites. Chemical Engineering Journal, 471, 144047.
16.Hairolnizam, N. F. A. B., Nasarudin, M. A. S., Mohamad Termizi, A. Z.-A., Amalina, F., Suryati Sulaiman, A. S. A. R., & Sulaiman, S. (2024). The potential of biodegradable compostable eco-straw from Lepironia articulata sp. (Purun/Kercut). Materials Today: Proceedings.
17.EPA. (2006); Hunt, J. et al. (1992) ;International Standards Organization. (2006).
18.Moy, C.-H., Tan, L.-S., Shoparwe, N. F., Mohd Shariff, A., & Tan, J. (2021). Comparative study of a life cycle assessment for bio-plastic straws and paper straws: Malaysia’s perspective. Processes, 9(6), 1007.
19.Chang, L., & Tan, J. (2021). An integrated sustainability assessment of drinking straws. Journal of Environmental Chemical Engineering, 9(4), 105527.
20.Lin, G., Yuan, J., Li, X., Zhao, S., Wang, S., Chang, H., & Zhao, Y. (2024). Strategic choice of the management of disposable meal boxes from the perspectives of life cycle impact assessment: Recycling fossil plastics or promoting biogenic plastics. Resources, Conservation and Recycling, 204, 107477.
21.Sala, S., Reale, F., Cristobal-Garcia, J., Marelli, L., & Pant, R. (2016).
22.Su, D., Smith, J., Wu, Y., & Ren, Z. (2020). Environment impact assessment of farming with combined methods of life cycle assessment and farm carbon calculator. In Sustainable product development: Tools, methods, and examples (pp. 249–270). Publisher.
23.Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37(6), 760–770.
24.Galán-Díaz, J. J., Pena-Mosquera, L., Puertas-Agudo, J., & Rodríguez, J. (2024). Carbon and water footprint assessment of the production cycle of the black soldier fly (Hermetia illucens) on a farm in Spain. Environmental Development, 51, 101038.
25.European Commission. (2022). Guidance document: The monitoring and reporting regulation – General guidance for installations.
26.World Bank. (2024). Carbon pricing dashboard.
27.Statista. (2024). Average annual EU-ETS emissions allowance prices 2020-2023.
28.Intergovernmental Panel on Climate Change. (2024, August 7). IPCC global warming potential values, greenhouse gas protocol (Version 2.0).
29.Grafman, L., & Adler, N. (2018). HSU straws analysis.
其他
1.The Freedonia Group。(https://www.freedoniagroup.com/ )
2.International Organization for Standardization; ISO。(https://www.iso.org/home.html )
3.Intergovernmental Panel on Climate Change; IPCC。(https://www.ipcc.ch/ )
4.SGS產品碳足跡盤查。(https://eecloud.sgs.com/Region_TW/service/service.aspx?ID=CARBON_FT )
5.行政院環境部。(https://www.moenv.gov.tw/ )
6.經濟部產業發展署。(https://www.idbcfp.org.tw/ViewData.aspx?nnid=204 )
7.台灣搖籃到搖籃平台。(https://www.c2cplatform.tw/c2c.php?Key=1 )
8.全國法規資料庫。(https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020102 )
9.Statista線上數據資料庫。(https://www.statista.com/)
10.越南自然資源與環境部。(https://monre.gov.vn/English)
11.Cross Sector Tool。(https://ghgprotocol.org/calculation-tools-and-guidance)
12.Intergovernmental Panel on Climate Change; IPCC。(https://www.ipcc.ch/)
13.Global Logistics Emissions Council; GLEC。(https://www.smartfreightcentre.org/en/our-programs/emissions-accounting/global-logistics-emissions-council/)
14.Smart Freight Centre; SFC。(https://www.smartfreightcentre.org/en/)
15.SEARATES by DP WORLD。(https://www.searates.com/)