研究生: |
李佩蓁 Li, Pei-Chen |
---|---|
論文名稱: |
載有薑黃素之多功能脂質/PLGA複合型微米粒子與明膠支架於角膜內皮再生之應用 Gelatin Scaffold with Multifunctional Curcumin-loaded Lipid-PLGA Hybrid Microparticles for Regenerating Corneal Endothelium |
指導教授: |
葉秩光
Yeh, Chih-Kuang 黃玠誠 Huang, Chieh-Cheng |
口試委員: |
陳宏吉
Chen, Hung-Chi 許翔皓 Hsu, Hsiang-Hao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 角膜內皮 、角膜移植 、薑黃素 、抗氧化 、抗發炎 、抗血管新生 |
外文關鍵詞: | corneal endothelium, corneal transplantation, curcumin, antioxidant, anti-inflammatory, anti-angiogenesis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
角膜內皮細胞在角膜中扮演著很重要的角色,藉由良好的排水功能維持角膜的透明度。人類角膜內皮細胞不具有再生能力,當角膜內皮細胞密度嚴重下降時,排水功能失調,將導致角膜的水腫及不透明,這會嚴重影響視力。目前臨床上解決角膜導致的視力喪失方法以角膜移植為主,但在供體短缺的情況下仍有許多患者無法被治癒。儘管有些患者能得到角膜移植機會,但可能因角膜本身的品質不佳或臨床上的炎症、免疫排斥等導致角膜內皮細胞大量的從供體中流失,使其密度急速下降,而導致移植失敗。薑黃素是一種疏水性藥物,在過去的文獻中證實其具有良好的抗氧化、抗炎症及抗血管新生的能力。本研究主要是希望設計一個組織工程載體去支持人類角膜內皮細胞的生長和移植,並且深入探討我們所製備出的薑黃素微米組織工程載體對於抗氧化、抗發炎及抗血管新生之能力。而我們成功證明製備出的明膠支架能夠培養人類角膜內皮細胞B4G12,且觀察到角膜內皮細胞間緊密連接蛋白的存在。動物實驗中,我們初步觀察在化學灼傷之兔眼模型中,發現薑黃素微米粒子對於損傷癒合的能力有正向的幫助。因此我們認為開發出微米粒子能夠有機會在角膜移植後,具有抗發炎、抗氧化及抗血管新生的能力下,同時促進移植後傷口的癒合。
Owing to the weak regenerative capacity of corneal endothelial cells (CECs), corneal transplantation is currently the only approach to cure corneal blindness. However, the global scarcity of donor tissue and the incidence of post-engraftment complications are issues that remain to be addressed. Cell-based strategies that employ CECs grown on supporting biomaterials hold great promise as possible alternative therapies for treating corneal endothelial dysfunction. Nevertheless, most biomaterials are used merely because of their robust mechanical properties, providing passive physical support for the transplantation of CEC monolayers. Herein, based on the versatility of curcumin in ophthalmic applications, the development of a gelatin-based scaffold with curcumin-loaded lipid-poly(lactic-co-glycolic acid) (PLGA) hybrid microparticles (MPs; Cur@MPs) for actively promoting the survival and function of grown CECs is described. The Cur@MPs exhibit a remarkable pro-proliferative effect on CECs and significant anti-inflammatory, antioxidative, and anti-angiogenic capacities, as indicated by our in vitro results. By incorporating the Cur@MPs into a thin gelatin membrane, the fabricated scaffold is able to support the growth and organization of CECs into a polygonal morphology with tight junctions. These experimental results demonstrate the potential of the Cur@MPs-loaded gelatin scaffold for actively supporting the survival and function of CEC monolayers after transplantation.
1. DelMonte, D.W., et al., Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery, 2011. 37(3): p. 588-598.
2. Wilson, S.A., et al., Last, Management of corneal abrasions. American Family Physician, 2004. 70(1): p. 123-128.
3. Farjo A., et al., Corneal anatomy, physiology, and wound healing. Ophthalmology, 2008: p. 203–208.
4. Omar, N., Host defence peptide (HDP) human beta defensin 9 (HBD9). 2016.
5. Cameron, J.D., Corneal reaction to injury. Cornea, 2005: p. 115-113.
6. HANNA, C., et al., Cell Turnover in the Adult Human Eye. Arch Ophthalmol, 1961. 65(5): p. 695-698.
7. Lagali, N., Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Current Eye Research, 2020. 45(3): p. 278-290.
8. West-Mays, J.A., et al., The keratocyte: Corneal stromal cell with variable repair phenotypes. International Journal of Biochemistry & Cell Biology, 2006. 38(10): p. 1625-1631.
9. Matthyssen, S., et al., Corneal regeneration: A review of stromal replacements. Acta Biomaterialia, 2018. 69: p. 31-41.
10. Pigatto, J.A.T., et al., Scanning electron microscopy of the corneal endothelium of ostrich. Ciencia Rural, 2009. 39(3): p. 926-929.
11. Joyce, N.C., Proliferative capacity of corneal endothelial cells. Experimental Eye Research, 2012. 95(1): p. 16-23.
12. McCarey, B.E., et al., Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea, 2008. 27(1): p. 1-16.
13. Yee, R.W., et al., Changes in The Normal Corneal Endothelial Cellular-Pattern as a Function of Age. Current Eye Research, 1985. 4(6): p. 671-678.
14. Arnalich-Montiel, F., Corneal Endothelium: Applied Anatomy. 2019.
15. Janson, B.J., et al., Glaucoma-associated corneal endothelial cell damage: A review. Survey of Ophthalmology, 2018. 63(4): p. 500-506.
16. Bourne, W.M., Biology of the corneal endothelium in health and disease. Eye, 2003. 17(8): p. 912-918.
17. Elhalis, H., et al., Fuchs Endothelial Corneal Dystrophy. The Ocular Surface, 2010. 8(4): p. 173-184.
18. Van den Bogerd, B., et al., A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol, 2018. 63(2): p. 149-165.
19. Tan, D.T.H., et al., Ophthalmology 3 Corneal transplantation. Lancet, 2012. 379(9827): p. 1749-1761.
20. Zhong, W., et al., Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Survey of Ophthalmology, 2018. 63(4): p. 453-479.
21. Bahar, I., et al., Comparison of posterior lamellar keratoplasty techniques to penetrating keratoplasty. Ophthalmology, 2008. 115(9): p. 1525-1533.
22. Reinhart, W.J., et al., Deep Anterior Lamellar Keratoplasty as an Alternative to Penetrating Keratoplasty A Report by the American Academy of Ophthalmology. Ophthalmology, 2011. 118(1): p. 209-218.
23. Price, M.O., et al., Descemet's stripping endothelial keratoplasty. Current Opinion in Ophthalmology, 2007. 18(4): p. 290-294.
24. Stuart, A.J., et al., Descemet's membrane endothelial keratoplasty (DMEK) versus Descemet's stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure (Review). Cochrane Database of Systematic Reviews, 2018(6).
25. Teichmann, J., et al., Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater, 2013. 4(4): p. 178-208.
26. Gomes, J.A., et al., Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol, 2005. 16(4): p. 233-40.
27. Ishino, Y., et al., Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci, 2004. 45(3): p. 800-6.
28. Maurice, D.M., et al., The use of cultured endothelium in keratoplasty. Vision Res, 1981. 21(1): p. 173-4.
29. Schwartz, B.D., et al., Morphology of transplanted corneal endothelium derived from tissue culture. Invest Ophthalmol Vis Sci, 1981. 20(4): p. 467-80.
30. McCulley, J.P., et al., Corneal endothelial transplantation. Ophthalmology, 1980. 87(3): p. 194-201.
31. Monton, C., et al., Quantitation of curcuminoid contents, dissolution profile, and volatile oil content of turmeric capsules produced at some secondary government hospitals. Journal of Food and Drug Analysis, 2016. 24(3): p. 493-499.
32. Vogel, H., et al., Curcumin-biological and medicinal properties. J Pharmacol, 1815. 2: p. 50–50.
33. Karewicz, A., et al., Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids and Surfaces B-Biointerfaces, 2013. 109: p. 307-316.
34. Yallapu, M.M., et al., Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 2010. 351(1): p. 19-29.
35. Liu, J., et al., Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis. Stem Cells International, 2015. 2015: p. 638153.
36. Motterlini, R., et al., Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biology and Medicine, 2000. 28(8): p. 1303-1312.
37. Ding, Q.X., et al., Preparation of Curcumin-Loaded Poly(ester amine) Nanoparticles for the Treatment of Anti-Angiogenesis. Journal of Biomedical Nanotechnology, 2014. 10(4): p. 632-641.
38. Hatcher, H., et al., Curcumin: From ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 2008. 65(11): p. 1631-1652.
39. Chatterjee, S., Oxidative Stress, Inflammation, and Disease, in Oxidative Stress and Biomaterials. 2016. p. 35-58.
40. Radomska-Lesniewska, D.M., et al., Therapeutic potential of curcumin in eye diseases. Central European Journal of Immunology, 2019. 44(2): p. 181-189.
41. Calabrese, V., et al., Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res, 2008. 52(9): p. 1062-73.
42. Chen, L., et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018. 9(6): p. 7204-7218.
43. Takeuchi, O., et al., Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-20.
44. Kaminska, B., MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta, 2005. 1754(1-2): p. 253-62.
45. Kumar, P., et al., TNF-alpha, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol Cell Biochem, 2017. 431(1-2): p. 113-122.
46. Jain, S.K., et al., Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal, 2009. 11(2): p. 241-9.
47. Aggarwal, B.B., et al., Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009. 41(1): p. 40-59.
48. Maheshwari, R.K., et al., Multiple biological activities of curcumin: a short review. Life Sci, 2006. 78(18): p. 2081-7.
49. Fu, Z., et al., Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget, 2015. 6(23): p. 19469-82.
50. Gong, C., et al., Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials, 2013. 34(4): p. 1413-32.
51. Naksuriya, O., et al., Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014. 35(10): p. 3365-83.
52. Chopra, D., et al., Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Biomaterials, 2016. 84: p. 25-41.
53. 陳思靜, 「可緩釋薑黃素之明膠支架做為角膜內皮細胞移植之載體」。碩士論文,國立清華大學生物醫學工程研究所,2019。https://hdl.handle.net/11296/943sr2.
54. Sun, M., et al., Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine, 2012. 7(7): p. 1085-1100.
55. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 2012. 161(2): p. 505-22.
56. Chaisri, W., et al., Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids Surf B Biointerfaces, 2011. 84(2): p. 508-14.
57. Acharya, S., et al., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev, 2011. 63(3): p. 170-83.
58. Marquez-Curtis, L.A., et al., Beyond membrane integrity: Assessing the functionality of human umbilical vein endothelial cells after cryopreservation. Cryobiology, 2016. 72(3): p. 183-90.
59. Xie, D., et al., Strategic Endothelial Cell Tube Formation Assay: Comparing Extracellular Matrix and Growth Factor Reduced Extracellular Matrix. J Vis Exp, 2016(114).
60. Gonzalez, A.C., et al., Wound healing - A literature review. An Bras Dermatol, 2016. 91(5): p. 614-620.
61. Clements, J.L., et al., Inflammatory corneal neovascularization: etiopathogenesis. Semin Ophthalmol, 2011. 26(4-5): p. 235-45.
62. Emiroglu, G., et al., The Effects of Curcumin on Wound Healing in a Rat Model of Nasal Mucosal Trauma. Evid Based Complement Alternat Med, 2017. 2017: p. 9452392.