研究生: |
莊介棠 Chuang, Chieh-Tang |
---|---|
論文名稱: |
新式微型彈簧之設計製造及其於電容式力感測器之應用 Design and Fabrication of a Novel Micro-spring for Capacitive Force Sensor Applications |
指導教授: |
陳榮順
Chen, Rongshun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | w形狀彈簧 、W-form spring |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Micro-spring is one of key elements for MEMS-devices. A good suspension spring not only provides stable support but also increases the performance of the sensors. In this study, a novel suspension spring, called the W-form spring, is proposed to provide a huge stiffness ratio in an out-of-plane direction, while retaining a large working range for a vertical comb electrodes capacitive sensor (VCECS). To realize the properties of the W-form spring, such as the spring constant and stiffness ratio, crab-leg and serpentine springs have also been designed, simulated and fabricated by MEMS techniques. The measured results show that the W-form spring has a very high stiffness ratio, over 39.2 times larger than the serpentine spring in an out-of-plane direction, which can resolve the mechanical decoupling for the VCECS.
To demonstrate the characteristics of the W-form spring, a capacitive force sensor using vertical comb electrodes is developed to detect normal loads. High sensitivity is achieved by the high aspect ratio comb electrodes with narrow comb gaps and large overlap areas. Furthermore, silicon nitride produced by plasma-enhanced chemical vapor deposition (PECVD) was deposited onto the comb electrodes of the sensor to increase the capacitance variation. Experimental results show that comb electrodes deposited with silicon nitride can enhance the sensitivity. The W-form springs used in this sensor also can increase the sensitivity as well as to stabilize the device by preventing collisions of the comb electrodes.
A three-dimensional (3-D) tactile sensor, based on differential capacitive sensing principle, has been fabricated by deep reactive-ion-etching (DRIE). Different from lower and upper electrodes of the conventional capacitive tactile sensor, normal and shear forces are differential detected by the vertical comb electrodes. Numerical analyses and measurement of the sensor is described. Experimental results show that the 3-D tactile sensor has a good linear response in the normal force.
[1] R. Maeda, M. Takahashi, and S. Sasaki, “Commercialization of MEMS and nano manufacturing,” Proceedings of IEEE Polytronic Conference, pp. 20-23, 2007.
[2] T. Muller, M. Brandl, O. Brand, and H. Baltes, “An industrial CMOS process family adapted for the fabrication of smart silicon sensors,” Sensors and Actuators A: Physical, vol. 84, pp. 126-133, 2000.
[3] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS – Present and future,” IEEE MEMS Conference 2002, Las Vegas, NV, pp. 459-466, 2002.
[4] R. T. Howe, “Microsensor and microactuator applications of thin films,” Thin Solid Films, vol. 181, no. 1-2, pp. 235-243, 1989.
[5] N. Yazdi, K. Najafi, and A. S. Salian, “A high-sensitivity silicon accelerometer with a folded-electrode structure,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 479-486, 2003.
[6] H. Lakdawala and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” Journal of Micromechanics and Microengineering, vol. 14, no. 4, pp. 559-566, 2004.
[7] T. Tsuchiya and H. Funabashi, “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensors and Actuators A: Physical, vol. 116, no.3, pp. 378-383, 2004.
[8] C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1275-1280, 2007.
[9] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A differential capacitive three-axis SOI accelerometer using vertical comb electrodes,” IEEE International Conference Solid-State Sensors, Actuators and Microsystems, pp. 1483-1486, 2007.
[10] J. W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of submicrometer, single crystal Si accelerometer,” Journal of Microelectromechanical Systems, vol. 10, no, 4, pp. 518-524, 2001.
[11] B. Baidya, S. K. Gupta, and T. Mukherjee, “An extraction-based verification methodology for MEMS,” Journal of Microelectromechanical Systems, vol. 11, no. 1, pp. 2-11, 2002.
[12] C. C. Chen, C. K. Lee, Y.-J. Lai, and W. C. Chen, “Development and application of lateral comb-drive actuator,” Japanese Journal of Applied Physics, vol. 42, no. 6B, pp. 4059-4062, 2003.
[13] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri, “Analysis, simulation and relative performances of two kinds of serpentine springs,” Journal of Micromechanics and Microengineering, vol. 15, pp. 736-746, 2005.
[14] S. Pourkamali, A. Hashimura, R. Abdolvand, G. K. Ho, A. Erbil, and F. Ayazi, “High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 487-493, 2003.
[15] J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, “Mechanical design and optimization of capacitive micromachined switch,” Sensors and Actuators A: Physical, vol. 93, no. 3, pp. 273-285, 2001.
[16] P. Valdastri, S. Roccella, L. Beccai, E. Cattin, A. Menciassi, M. C. Carrozza, and P. Dario, “Characterization of a novel hybrid silicon three-axial force sensor,” Sensors and Actuators A: Physical, vol. 123-124, pp. 249-257, 2005.
[17] R. J. De Souza and K. D. Wise, “A very high density bulk micromachined capacitive tactile sensor,” Proceedings of Transducers’97, Chicago, vol. 2, pp.1473-1476 , 1997.
[18] H. N. Kwon, J. H. Lee, K. J. Takahashi, and H. Toshiyoshi, “Micro XY-stages with spider-leg actuators for 2-dimensional optical scanning,” Transducers’05, pp. 69-72, 2005.
[19] J. W. Joo and S.-H. Choa, “Deformation behavior of MEMS gyroscope sensor package subjected to temperature change,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no, 2, pp. 346-354, 2007.
[20] B. Andò, S. Baglio, M. Baù, V. Ferrari, E. Sardini, N. Savalli, M. Serpelloni, and C. Trigona, “Contactless electromagnetic interrogation of a MEMS-based microresonator used as passive sensing element,” Transducers’09, pp. 1429-1432, 2009.
[21] J A. Yeh, C.-N. Chen, and Y.-S. Lui, “Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension,” Journal of Micromechanics and Microengineering, vol. 15, pp. 201-206, 2005.
[22] S. H. Tsang, D. Sameoto, I. Foulds, A. M. Leung, and M. Parameswaran, “Automated assembly of hingeless 90 degrees out-of-plane microstructures,” Journal of Micromechanics and Microengineering, vol. 17, no. 7, pp. 1314–1325, 2007.
[23] S. Oak, G. F. Edmiston, G. Sivakumar, and T. Dallas, “Rotating out-of-plane micromirror,” Journal of Microelectromechanical Systems, vol. 19, no. 3, pp. 632-639, 2010.
[24] C. M. Sun, M. H. Tsai, Y. C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS Technique,” IEEE Transactions on Electron Devices, In press, 2010.
[25] K. Y. Park, C. W. Lee, Y. S. Oh, and Y. H. Cho, “Laterally oscillated and force-balanced micro vibratory rate gyroscope supported by fish-hook-shaped springs,” Sensors and Actuators A: Physical, vol. 64, pp. 69-76, 1998.
[26] S. S. Baek, Y. S. Oh, B. J. Ha, S. D. An, B. H. An, H. Song, and C. M. Song, “A symmetrical Z-axis gyroscope with a high aspect ratio using simple and new process,” IEEE Micro Electro Mechanical System Workshop, pp. 612-617, 1999.
[27] B. Yang, C. k. Lee, R. K. Kotlanka, J. Xie, and S. P. Lim, “A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations,” Journal of Micromechanics and Microengineering, vol. 20, 065017, 2010.
[28] Y Sun, B. J. Nelson, D. P Potasek, and E. Enikov, “A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives,” Journal of Micromechanics and Microengineering, vol. 12, pp. 832-840, 2002.
[29] Y. Sun, S. N. Fry, D. P. Potasek, D. J. Bell, and Brad J. Nelson, “Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration,” Journal of Microelectromechanical Systems, vol. 14, no. 1, pp. 4-11, 2005.
[30] B. K. Nguyen, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Insertion force sensor by sidewall-doping with rapid thermal diffusion,” MEMS Conference 2006, pp. 662-665.
[31] P. Valdastri, S. Roccella, L. Beccai, E. Cattin, A. Menciassi, M. C. Carrozza, and P. Dario, “Characterization of a novel hybrid silicon three-axial force sensor,” Sensors and Actuators A: Physical, vol. 123-124, pp. 249-257, 2005.
[32] G. Vásárhelyi, M. Ádám, É. Vázsonyi, Z. Vízváry, A. Kis, I. Bársony, and C. Dücsõ, “Characterization of an integrable single-crystalline 3-D tactile sensor,” IEEE Sensors Journal, vol. 6, no. 4, pp. 928-934, 2006.
[33] A. Tibrewala, A. Phataralaoha, and S. Büttgenbach, “Simulation, fabrication and characterization of a 3D piezoresistive force sensor,” Sensors and Actuators A: Physical, vol. 147, pp. 430-435, 2008.
[34] M. H. Lee and H. R. Nicholls, “Tactile sensing for mechatronics - a state of the art survey”, Mechatronics, vol. 9, no.1, pp.1-31, 1999.
[35] T. Mei, W. J. Li, Y. Ge, Y. Chen, L. Ni, and M. H. Chan, “An integrated MEMS three-dimensional tactile sensor with large force range,” Sensors and Actuators A: Physical ,vol. 80, no.2, pp. 155-162, 2000.
[36] Y. Hasegawa, M. Shikida, T. Shimizu, T. Miyaji, H. Sasaki, K. Sato, and K. Itoigawa, “A micromachined active tactile sensor for detecting contact force and hardness of an object,” Sensors and Actuators A: Physical, vol. 114, pp. 141–146, 2004.
[37] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, vol. 13, pp. 359-366, 2003.
[38] K. Kim, K. R. Lee, Y. K. Kim, D. S. Lee, N. K. Cho, W. H. Kim, K. B. Park, H. D. Park, Y. K. Park, J. H. Kim, and J. J. Pak, “3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology,” IEEE MEMS Conference 2006, pp. 678-681, 2006.
[39] E.-S. Hwang, J.-H. Seo, and Y.-J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 556-563, 2007.
[40] C.-S. Park, J. Park b, and D.-W. Lee, “A piezoresistive tactile sensor based on carbon fibers and polymer substrates,” Microelectronic Engineering, vol. 86, no. 4-6, pp. 1250-1253, 2009.
[41] W.-Y. Chang, T.-H. Fang, S.-H. Yeh, and Y.-C. Lin, “Flexible electronics sensors for tactile multi-touching,” Sensors, vol. 9, pp. 1188-1203, 2009.
[42] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A: Physical, vol. 127, pp. 295-301, 2006.
[43] C.-C. Wen and W. Fang, “Tuning the sensing range and sensitivity of 3-Axes tactile sensors using the polymer composite membrane,” Sensors and Actuators A: Physical, vol. 145-146, pp. 14-22, 2008.
[44] B. J. Kane, M. R. Cutkosky, and G. T. A. Kovacs, “CMOS-compatible Traction Stress Sensor for USE in High-Resolution Tactile Imaging,” Sensors and Actuators, A: Physical, vol. A54, no.1-3, pp.511-516, 1996 .
[45] T. Lomas, A. Tuantranont, and F. Cheevasuvit, ”Micromachined piezoresistive tactile sensor array fabricated by bulk-etched MUMPS process,” Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 4, pp. 25-28, 2003.
[46] E. S. Kolesar and C. S. Dyson, “Object imaging with a piezoelectric robotic tactile sensor,” Journal of Microelectromechanical Systems, vol. 4, no. 2, pp.87-96, 1995.
[47] C. Li, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, “Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 334-341, 2008.
[48] M. A. Qasaimeh, S. Sokhanvar, J. Dargahi, and M. Kahrizi, “PVDF-based microfabricated tactile sensor for minimally invasive surgery,” Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 195-207, 2009.
[49] M. H. Lee, “Tactile sensing: new directions, new challenges,” The International Journal of Robotics Research, vol. 19, no.7, pp. 636-43, 2000.
[50] Z. Chu, P. M. Sarro, and S. Middelhoek, ”Silicon three-axial tactile sensor,” Solid-State Sensors and Actuators A, vol.54, pp. 505-510, 1995.
[51] T. Salo, K.-U. Kirstein, T. Vancura, and H. Baltes, “CMOS-based tactile microsensor for medical instrumentation,” IEEE Sensors Journal, vol. 7, no. 2, pp. 258-265, 2007.
[52] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems,” vol. 17, no. 4, pp. 934-942, 2008.
[53] H.-K. Lee, S.-I. Chang, and E. Yoon, “A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment,” Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006.
[54] M.-Y. Cheng, X.-H. Huang, C.-W. Ma, and Y-J Yang, “A flexible capacitive tactile sensing array with floating electrodes,” Journal of Micromechanics and Microengineering, vol. 19, no. 11, 115001, 2009.
[55] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, “A tunable range/sensitivity CMOS-MEMS capacitive tactile sensor with polymer fill-in technique,” Transducers’ 09, pp. 2190 -2193, 2009.
[56] W. C. Tang, T.-C. H. Nguyena, M. W. Judya, and R. T. Howea, “Electrostatic-comb drive of lateral polysilicon resonators,” Sensors and Actuators A: Physical, vol. 21, no 1-3, pp. 328-331, 1990.
[57] A. A. Trusov and A. M. Shkel, “Capacitive detection in resonant MEMS with arbitrary amplitude of motion,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1583-1592, 2007.
[58] C. Wang, B. P. Gogoi, D. J. Monk, and C. H. Mastrangelo, “Contamination-insensitive differential capacitive pressure sensors,” Journal of Microelectromechanical Sysyems, vol. 9, no. 4, pp. 538-543, 2000.
[59] R. Legtenberg, A. W. Groeneveld , and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996.
[60] J. M. Gere and S.P. Timoshenko, Mechanics of Materials, 2nd Edition, Wadsworth, Belmont, 1984.
[61] http://www.memsnet.org/material/siliconsibulk/
[62] K. Komai, K. Minoshima, and S. Inoue, “Fracture and fatigue behavior of single crystal silicon microelements and nanoscopic AFM damage evaluation,” Microsystem Technologies, vol. 5, pp. 30-37, 1998.
[63] C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, “Smart single-chip gas sensor microsystem,” Nature, vol. 414, pp. 293-296, 2001.
[64] H. Gleskova, S. Wagner, V. Ga parík, and P. Ková , “Low-temperature silicon nitride for thin-film electronics on polyimide foil substrates,” Applied Surface Science, vol. 175-176, no. 15, pp. 12-16, 2001.