簡易檢索 / 詳目顯示

研究生: 陳意筑
Chen, I Chu
論文名稱: 黑磷烯與奈米黑磷管之熱力與熱機械性質分析
A Study of Thermodynamic and Thermal-Mechanical Properties of Phosphorene sheet and Phosphorene Nanotube
指導教授: 陳文華
Chen, Wen Hwa
鄭仙志
Cheng, Hsien Chie
口試委員: 劉德騏
陸蘇財
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 奈米黑磷管黑磷烯熱力與熱機械性質分子動力學缺陷
外文關鍵詞: phosphorene nanotube, phosphorene, thermodynamic and thermal-mechanical properties, molecular dynamics, defects
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀二維材料(Two-dimensional materials)不但具有特殊的電導、熱導、光學與機械特性,且易與現今元件製程整合,故被視為很有潛力可取代矽材元件之新穎材料。
    黑磷烯(Phosphorene)為一新興層狀二維材料,係由磷原子組成之六角呈皺褶蜂巢狀晶格結構(Lattice structure),具有良好的電性與光學性質,如擁有石墨烯(Graphene)缺乏之電子能隙(Bandgap),且具有較高之載子移動率(Carrier mobility)及開關比(On-off ratio),使其成為奈米電子元件材料之明日之星。然高功能奈米電子元件亦伴隨高功率密度需求,所產生之高溫常使得材料物理性質改變並影響電子元件之性能,因此有效掌握黑磷烯之熱力及熱機械性質,已成為一重要研究課題。此外,由於製程技術之限制,黑磷烯於製作過程中常易產生缺陷(Defect),而此缺陷也將深深影響黑磷烯之電性與機械性質,亦值得深入探討。
    另外,低維度奈米結構因具有奈米尺寸、單晶結構及獨特之尺寸量子效應等優點,已漸被應用於微奈米電子與機電系統中。因此,將層狀二維材料轉化為一維結構如奈米管、奈米線或奈米帶等,並探討其物理性質是必要的。
    本論文首先結合分子動力學(Molecular dynamics)及Nosé-Hoover Langevin熱容法(Thermostat)進行黑磷烯(Phosphorene sheet)之熱力與熱機械性質分析,包含楊氏模數、剪切模數、比熱與線性熱膨脹係數等,並進一步探討不同缺陷種類與缺陷率對黑磷烯之影響。最後,針對不同結構之單層奈米黑磷管(Phosphorene nanotube),包括鋸齒型(Zigzag)、扶手型(Armchair)與混合型(Hybrid)之熱力與熱機械性質進行計算。計算所得結果與文獻相較頗為脗和,顯示本論文分析方法之正確及有效性。
    本論文之成果可供未來以黑磷烯與奈米黑磷管為本之奈米電子元件設計與開發之參考。


    Two-dimensional materials not only possess distinctive electrical and thermal conductivities, optical and mechanical properties, but also incline to be integrated with device manufacturing process. Therefore, it is regarded as a promising material to replace silicon materials.
      Phosphorene, a novel two-dimensional puckered honeycomb lattice of phosphorus, possesses some remarkable electrical and optical properties, such as it has a direct bandgap, relatively high carrier mobility and on/off ratio, thereby making it to be a rising star among the electronics device materials. However, when applied in electronic devices, the phosphorene-based nano-scale electronic components often suffer from high temperature loading, which would change the physical properties of phosphorene and so affect the electrical performance. Well grasp of the thermodynamic and thermo-mechanical properties of phosphorene is crucial for successful implementation of the nano-scale electronic components. Besides, due to the limitation of fabrication technologies nowadays, atomistic defects are often perceived in phosphorene during the manufacturing process and affect the electrical and mechanical properties. Thus, the second goal of the study is to perform a systematic investigation of the effects of atomistic defects on the thermodynamic and thermo-mechanical properties of phosphorene.
      Because of the distinct size-dependent quantum effects together with nanosize and single crystal structure, low-dimensional structures are potential for use in nano-scale electronic or electromechanical devices. Hence, converting two-dimensional sheet to one-dimensional structure, such as nanotubes, nanowires or nanoribbons and investigate their physical properties are necessary.
    The work attempts to assess the thermodynamic and thermo-mechanical properties of phosphorene at constant temperature though the canonical ensemble MD model using a Nosé-Hoover Langevin (NHL) thermostat, including Young’s modulus, (Poisson’s ratio), shear modulus, specific heat and linear coefficient of thermal expansion. In addition, the defect effects of phosphorene is also examined. The thermodynamic and thermo-mechanical properties of phosphorene nanotubes of zigzag, armchair and hybrid type are investigated as well. The simulation results are compared with the literature data to demonstrate the validity of the proposed simulation model. In closing, the present work can be beneficial to the design and development of phosphorene-based nano-scale electronic components in future.

    摘要 I Abstract III 目錄 V 圖表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 4 第二章 分子動力學 5 2.1 Hamiltonian動力學 5 2.2 勢函數 7 第三章 數值計算方法 10 3.1 分析模擬之模型 10 3.2 黑磷烯最佳化 11 3.3 控制溫度 12 第四章 材料性質計算 16 4.1 楊氏模數 16 4.2 剪切模數 16 4.3 比熱 17 4.4 線性熱膨脹係數 17 第五章 結果與討論 18 5.1 楊氏模數 18 5.2 剪切模數 21 5.3 比熱 24 5.4 線性熱膨脹係數 25 第六章 結論與未來展望 28 參考文獻 30 圖表 36

    [1]. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. (1984): Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics, Vol. 81, No. 8, pp. 3684–3690.

    [2]. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, B. A. ; van der Zant, H. S. J.; Castellanos, A. (2014): Fast and Broadband Photoresponse of Few-Layer BlackPhosphorus Field-Effect Transistors. Nano Letters, Vol. 14, pp. 3347-3352.

    [3]. Cai, Y.; Ke, Q.; Zhang, G.; Feng, Y. P.; Shenoy, V. B.; Zhang, Y. W. (2015): Giant Phononic Anisotropy and Unusual Anharmonicity of Phosphorene: Interlayer Coupling and Strain Engineering. Advanced Functional Materials, Vol. 25, pp. 2230-2236

    [4]. Dai, J.; Zeng, X. C. (2014): Mechanical Properties of Carbon Nanotubes Using Molecular Dynamics Simulations with the Inlayer van der Waals Interactions. The Journal of Physical Chemistry, Vol. 5, pp. 1289-1293.

    [5]. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A. ; Dubey, M. ; Roelof, A. (2014): Tunable Transport Gap in Phosphorene. Nano Letters, Vol. 14, pp. 5733-5739.

    [6]. Green, M. S.(1954): Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids. Journal of Chemical Physics, Vol. 22, pp.398-413.

    [7]. Guo, H.; Lu, N.; Dai, J.; Wu, X.; Zeng, X. C. (2014): Phosphorene Nanoribbons, Nanotubes, and Van der Waals Mutilayers. J. Phys. Chem. C, Vol. 118 (25), pp. 14051–14059

    [8]. Gusev, A. A.; Zehnder, M. M.; Suter, U. W. (1996): Fluctuation Formula for Elastic Constant. Physical review B, Vol. 54, pp. 541.

    [9]. Hao, F.; Liao, X.; Hang, X.; Chen X. (2016): Thermal Conductivity of Armchair Black Phosphorus Nanotubes: a Molecular Dynamics Study. Nanotechnology, Vol. 27, pp. 155703(1)- 155703(7).

    [10]. Hoover, W. G. (1985): Canonical Dynamics: Equilibrium Phase-Space Distributions. Physical Review A, Vol. 31, pp. 1695.

    [11]. Hu, T.; Han, Y.; Dong, J. (2014): Mechanical and Electronic Properties of Monolayer and Bilayer Phosphorene Underuniaxial and Isotropic Strains. Nanotechnology, Vol. 25, pp. 455703(1) - 455703(9).

    [12]. Hu, T.; Dong, J. (2015): Geometric and Electronic Structures of Mono- and Di-Vacancies in Phosphorene. Nanotechnology, Vol. 26, No. 6, pp. 065705(1)- 065705(9).

    [13]. Hu, W.; Yang, J. (2015): Defect in Phosphorene. The Journal of Physical Chemistry C, Vol. 119, No. 35, pp. 20474-20480.

    [14]. Huntington, H. B. (1958): The Elastic Constants of Crystals. New York: Academic Press.

    [15]. Iijima, S. (1991): Helical Microtubules of Graphitic Carbon. Nature, Vol. 354, pp.56-58

    [16]. Ilic, B.; Czaplewski, D.; Craighead, H. G.; Neuzil, P.; Campagnolo, C.; Batt, C. (2000): Mechanical Resonant Immunospecific Biological Detector. Applied Physics Letters, Vol. 77, pp. 450-452

    [17]. Jain, A.; McGaughey, A. J. H. (2015): Strongly Anisotropic In-Plane Thermal Transport in Single-Layer Black Phosphorene. Scientific Reports, Vol. 5, pp. 8501(1)- 8501(5).

    [18]. Jiang, J. W.; Park, H. S. (2014): Mechanical Properties of Single-Layer Black Phosphorus. Journal of Physics D: Applied Physics, Vol. 47, pp. 385304(1)- 385304(3).

    [19]. Jin, L.; Bower, C.; Zhou, O. (1998): Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching. Applied Physics Letters, Vol. 73, pp. 1197-1199.

    [20]. Karlin, S.; Taylor, H. M. (1980): A Second Course in Stochastic Process. New York: Academic Press.

    [21]. Kittel, C. (1996): Introduction to Solid State Physics 7th edition. New York: John Wiley & Sons.

    [22]. Kubo, R. (1957): Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, Vol. 12, No.6, pp. 570-586.

    [23]. Leimkuhler, B.; Noorizadeh, E.; Theil, F. (2009): A Gentle Stochastic Thermostat for Molecular Dynamics. Journal of Statistic Physics, Vol. 135, pp. 261-277.

    [24]. Li, L.; Yu, Y.; Ye , G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng , D.; Chen, X. H.; Zhang, Y. (2014): Black Phosphorus Field-Effect Transistors. Nature Nanotechnology, Vol. 9, pp. 372-377.

    [25]. Lifson, S.; Hagler, A. T.; Dauber, P. (1979):Consistent Force Field Studies of Intermolecular Forces in Hydrogen-bonded Crystals. 1. Carboxylic Acids, Amides, and the C=O-H-hydrogen Bonds. Journal of the American Chemical Society, Vol. 101, pp.5111-5121.

    [26]. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye P. D. (2014): Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, Vol. 8, pp. 4033–4041.

    [27]. Marion, J. B.; Thornton, S. T. (2004): Classical Dynamics of Particles and Systems 5th Edition. Belmont, CA: Thomson Learning.

    [28]. Materials Studio (2001): User's Manual, Version 1.2. Accelrys, Inc. San Diego.
    [29]. Moran, M. J.; Shapiro, H. N. (2007): Fundamentals of Engineering Thermodynamics 6th Edition. New York: John Wiley & Sons.

    [30]. Nosé, S. (1984): A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. Journal of Chemical Physics, Vol.81, pp. 511.

    [31]. Parr, R. G.; Yang, W. (1989): Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.

    [32]. Petit, A. T.; Dulong, P. L. (1819): Research on some important aspects of the theory of heat. Annals of Philosophy, Vol. 14, pp. 189-198.

    [33]. Rapaport, D. C. (2004): The Art of Molecular Dynamics Simulation. Cambridge University Press, U.K.

    [34]. Rickayzen, G.; Powles, J. G. (2000): Temperature in the Classical Microcanonical Ensemble. Journal of Chemical Physics, Vol. 114, pp. 4333.

    [35]. Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. (2014): Few-Layer Black Phosphorus: Emerging Direct Band Gap Semiconductor with High Carrier Mobility. Nature Communications, Vol. 5, pp. 4475(1)-4475(7).

    [36]. Samoletov, A. A.; Dettmann, C. P.; Chaplain, M. A. (2007): Thermostats for “Slow” Configurational Modes. Journal of Statistic Physics, Vol. 128, pp. 1321-1336.

    [37]. Schlick, T. (2002): Molecular Modeling and Simulation. Springer, pp.480.

    [38]. Segall, M. D.; Lindan, P. J.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. (2002): First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, Vol. 14, No. 11, pp. 2717-2744.

    [39]. Sun, H. (1998) :COMPASS: An ab Initio Force-field Optimized for Condensed-phase Applications Overview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B, Vol. 102, pp.7338-7364.

    [40]. Sun, H.; Ren, P.; Fried, J. R. (1998):The COMPASS Force Field: Parameterization and Validation for Phosphazenes. Computational and Theoretical Polymer Science, Vol. 8, pp.229-246.

    [41]. Tao, J.; Shen, W.; Wu, S.; Liu, L.; Feng, Z.; Wang, C.; Hu, C.; Yao, P.; Zhang, H.; Pang, W.; Duan, X.; Liu, J.; Zhou, C.; Zhang, D. (2015): Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. ACS Nano, Vol. 9, No 11, pp. 11362–11370.

    [42]. Thostenson, E. T.; Ren, Z.; Chou, T. W. (2001): Advances in the Science and Technology of Carbon Nanotubes and their Composites: a Review. Composites Science and Technology, Vol. 61, pp. 1899-1912

    [43]. Tuckerman, M. E.; Parrinello, M. (1994): Integrating the Car-Parrinello Equations. I. Basic Integration Techniques. Journal of Chemical Physics, Vol. 101, pp. 1302-1315.

    [44]. Vanderplaats, G. N. (1984): Numerical Optimization Techniques for Engineering Design: with Applications. New York: McGraw-Hill.

    [45]. Wei, Q.; Peng, X. (2014): Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus. Applied Physics Letters, Vol. 104, pp. 251915(1)- 251915(15).

    [46]. Xu, W.; Zhu, L.; Cai, Y.; Zhang, G.; Baowen, L. (2015): Direction Dependent Thermal Conductivity of Monolayer Phosphorene: Parameterization of Stillinger-Weber Potential and Molecular Dynamics Study. Journal of Applied Physics, Vol. 117, pp. 214308(1)- 214308(25).

    [47]. Yang, Z.; Zhao, J.; Wei, N. (2015): Temperature-Dependent Mechanical Properties of Monolayer Black Phosphorus by Molecular Dynamics Simulations. Applied Physics Letters, Vol. 107, pp. 023107(1)- 023107(5).

    [48]. Yexin, D.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. ; Ye, P. D. (2014): Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. ACS nano, Vol. 8, pp. 8292-8299.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE