簡易檢索 / 詳目顯示

研究生: 黃品燊
Huang, Pin-Shen
論文名稱: 微波氫氣電漿放電數值模擬研究-電漿/微波頻率響應之分析
Numerical Simulation Study of Microwave Hydrogen Plasma Discharges - Plasma/Microwave Frequency Response Analysis
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 李志浩
Lee, Chia-Hao
張家豪
Chang, Chia-Hao
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 162
中文關鍵詞: 微波電漿氫氣電漿共振式微波電漿電漿模擬表面波電漿
外文關鍵詞: microwave, hydrogen, plasma, simulation, COMSOL
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將研究兩種形式的微波電漿源,分別為共振式微波電漿源(resonant type microwave plasma)和表面波電漿源(surface wave plasma source),在實際建立電漿系統前,運用數值計算來模擬電漿系統之可行性已是現在趨勢,透過模擬結果來觀察電漿在系統中極短時間內變化更有利於了解其特性,因此本研究以數值模擬計算分析進一步探討電漿腔體與微波源耦合之特性,藉由二維軸對稱流體模型放電氣體選用氫氣,模型包括電漿理論、電磁波理論,同時考慮熱傳與流場影響。
    共振式微波電漿源其應用於鑽石薄膜的合成是目前許多學界及業界所研究的領域,其中目前最主要的合成方式即為微波電漿輔助化學氣相沉積(Microwave plasma-assisted CVD, MPACVD)。表面波電漿的優點為大面積、高密度、高均勻度等,大面積晶圓製程、極短製程時間、奈米等級關鍵尺寸為目前半導體工業之趨勢,表面波電漿為理想的製程電漿源之一。
    共振式微波電漿TM023-CMM-V模擬結果顯示利用隨時變之斜坡函數調整都卜勒參數,微波進入腔體後激發預期之共振模態,在基板沉積平面上方成功點起直徑約100 mm之電漿球體。提出第二電漿的問題是與腔體模態有關,共振頻率偏移是由於腔體模態所影響,若不改變頻率,電漿點起後原本腔體模態的共振頻率會偏移,因此需要找回原來腔體模態之共振頻率以解決第二電漿之問題,同時藉由操作在共振頻率能增加相同壓力下微波功率的操作範圍。
    表面波電漿SW-SWP-V模擬結果顯示側壁表面波電漿腔體微波由溝槽天線耦合進介電質窗,在介電質窗表面形成駐波之表面波結構,並成功點起電漿,同時也解決了加上流場熱傳後COMSOL數值模擬軟體難以收斂的問題,在微波功率為1 kW,氫氣氣壓為30 mTorr時,電子密度約為5x1016 m-3,電漿主要區域電子溫度約為1-3 eV,進一步分析表面波電漿源之功率耦合與低氣壓下的電漿特性,表面波的形成與電磁場分佈等微波特性,探討電子密度、電漿電位、電子溫度等電漿特徵。


    This thesis will study two different types of microwave plasma sources, namely, resonant microwave plasma sources and surface wave plasma sources. Before the plasma system is actually established, the feasibility of using numerical calculation to simulate the plasma system has become a current trend. Through the simulation results, the changes of the plasma in the system can be observed in a very short time, which is more conducive to understanding the characteristics of the plasma. Therefore, this study further explored the coupling characteristics between the plasma cavity and the microwave source through numerical simulation calculation analysis. Hydrogen was selected as the discharge gas by a two-dimensional axisymmetric fluid model. The model includes plasma theory and electromagnetic wave theory, and also considers heat transfer and laminar flow influences.
    Resonant microwave plasma source for the synthesis of diamond film has been widely studied by many researcher and industrial. The mainly method for synthesize diamond film is microwave plasma- assisted chemical vapor deposition (MPACVD). Surface wave plasma has the benefits of large plasma area, high plasma density, and high plasma uniformity, and therefore it is an ideal plasma source of semiconductor industry pursuing large area wafer process, extremely rapid process period, and nanometer critical dimension.
    The simulation results of the resonant microwave plasma TM023-CMM-V show that the Doppler parameter is adjusted by the step function that changes over time. After the microwave enters the cavity, the expected resonant mode is excited, and a diameter of about 100 mm is successfully placed above the deposition plane of the substrate.
    Surface wave plasma SW-SWP-V simulation results show that microwave coupling into the dielectric window, forming the surface wave structure in the standing wave form, and the plasma ignited successfully. At the same time, also solves the problem that the COMSOL numerical simulation software is difficult to converge after adding the heat transfer in the laminar field. When the microwave power is 1 kW and the hydrogen pressure is 30 mTorr, the electron density is about 5x1016 m-3, and the electron temperature in the main plasma area is about 1-3 eV, further analyze the power coupling of the surface wave plasma source and the plasma characteristics under low pressure, the formation of the surface wave and the electromagnetic field distribution and other microwave characteristics, and discuss the plasma characteristics such as electron density, plasma potential, and electron temperature.

    摘要-i 目錄-v 圖目錄-viii 表目錄-xix 第一章 緒論-1 1.1研究背景-1 1.2微波電漿簡介-4 1.3研究動機與目的-5 第二章 文獻回顧-7 2.1 微波電漿原理文獻回顧-7 2.2 共振式微波電漿源腔體結構及共振模態文獻回顧-11 2.3 第二電漿區產生文獻回顧-18 2.4 電子加熱模式轉換文獻回顧-24 2.5 表面波電漿源腔體及耦合天線結構文獻回顧-28 2.6 微波頻率耦合文獻回顧-39 2.7 文獻回顧結論-47 2.7.1 共振式微波電漿源腔體文獻回顧結論-47 2.7.2 表面波電漿源腔體文獻回顧結論 -48 第三章 物理模型與研究方法-49 3.1 COMSOL模擬軟體介紹-49 3.1.1 COMSOL模擬之物理模型-49 3.1.2 電子傳輸理論-50 3.1.3 重粒子傳輸理論-53 3.1.4 電磁波理論-56 3.1.5 流體熱傳理論-58 3.2 模擬之幾何結構-61 3.2.1 TM023腔體微波電漿(TM023-CMMP-V)幾何結構-61 3.2.2 側壁表面波電漿源(SW-SWP-V)幾何結構-63 3.3 邊界條件-64 3.4 反應式資料庫-65 第四章 TM023-CMMP-V氫氣電漿數值模擬計算模型與結果-71 4.1 模擬條件與初始參數-71 4.2 TM023-CMMP-V暫態結果分析-76 4.2.1 微波電漿基本放電特性-76 4.2.2 微波電漿中重粒子之分析-80 4.3 TM023-CMMP-V探討微波電漿共振頻率之響應-83 4.3.1 第二電漿生成與電漿特性分析-83 4.3.2 相同固定吸收功率在不同氣壓下電漿特性之效應-90 4.3.3 不同固定吸收功率在相同氣壓下電漿特性之效應-97 4.3.4 電漿共振頻率對電漿特性之效應-103 4.3.5 微波吸收功率對電漿共振頻率之效應-110 4.4 固定吸收與輸入微波功率之分析-112 第五章 SW-SWP-V氫氣電漿數值模擬計算模型與結果-121 5.1 模擬條件與初始參數-121 5.2 SW-SWP-V暫態結果分析-122 5.2.1 氫氣表面波電漿基本放電特性-122 5.3 SW-SWP-V 考慮流場與熱傳物理之影響-127 5.4 SW-SWP-V 考慮流場與熱傳物理之微波吸收功率對電漿特性之效應-135 5.5 SW-SWP-V 考慮流場與熱傳物理之氣體壓力對電漿特性之效應-140 第六章 總結-153 TM023-CMMP-V結論-153 SW-SWP-V結論-153 附錄A-154 SW-SWP-V 腔體氫氣電漿使用Frequency tuning 調頻情況探討-154 附錄B-159 商業微波產生器-159 參考文獻-160

    [1] 葉以凝, "微波氫氣電漿之流體模型數值模擬研究," 碩士, 工程與系統科學系, 國立清華大學, 2018.
    [2] M. Moisan, Z. Zakrzewski, and R. Pantel, "THEORY AND CHARACTERISTICS OF AN EFFICIENT SURFACE-WAVE LAUNCHER (SURFATRON) PRODUCING LONG PLASMA COLUMNS," (in English), J. Phys. D-Appl. Phys., Article vol. 12, no. 2, pp. 219-&, 1979, doi: 10.1088/0022-3727/12/2/008.
    [3] F. Werner, D. Korzec, and J. Engemann, "Slot antenna 2.45 GHz microwave plasma source," (in English), Plasma Sources Sci. Technol., Article vol. 3, no. 4, pp. 473-481, Nov 1994, doi: 10.1088/0963-0252/3/4/004.
    [4] H. Sugai, I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves," (in English), Plasma Sources Sci. Technol., Article vol. 7, no. 2, pp. 192-205, May 1998, doi: 10.1088/0963-0252/7/2/014.
    [5] M. Nagatsu, S. Morita, I. Ghanashev, A. Ito, N. Toyoda, and H. Sugai, "Effect of slot antenna structures on production of large-area planar surface wave plasmas excited at 2.45 GHz," (in English), J. Phys. D-Appl. Phys., Article vol. 33, no. 10, pp. 1143-1149, May 2000, doi: 10.1088/0022-3727/33/10/302.
    [6] M. Kanoh, K. Aoki, T. Yamauchi, and Y. Kataoka, "Microwave-excited large-area plasma source using a slot antenna," (in English), Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., Article vol. 39, no. 9A, pp. 5292-5296, Sep 2000, doi: 10.1143/jjap.39.5292.
    [7] R. D. Tarey, R. K. Jarwal, A. Ganguli, and M. K. Akhtar, "High-density plasma production using a slotted helical antenna at high microwave power," (in English), Plasma Sources Sci. Technol., Article; Proceedings Paper vol. 6, no. 2, pp. 189-200, May 1997, doi: 10.1088/0963-0252/6/2/013.
    [8] T. Goto, M. Hirayama, H. Yamauchi, M. Moriguchi, S. Sugawa, and T. Ohmi, "A new microwave-excited plasma etching equipment for separating plasma excited region from etching process region," (in English), Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., Article; Proceedings Paper vol. 42, no. 4B, pp. 1887-1891, Apr 2003, doi: 10.1143/jjap.42.1887.
    [9] K. Hassouni, F. Silva, and A. Gicquel, "Modelling of diamond deposition microwave cavity generated plasmas," (in English), J. Phys. D-Appl. Phys., Review vol. 43, no. 15, p. 45, Apr 2010, Art no. 153001, doi: 10.1088/0022-3727/43/15/153001.
    [10] 賴柏廷, "溝槽天線耦合式表面波電漿放電數值模擬研究," 碩士, 工程與系統科學系, 國立清華大學, 2020.
    [11] C. M. Ferreira, E. Tatarova, J. Henriques, and F. M. Dias, "Modelling of large-scale microwave plasma sources," Journal of Physics D: Applied Physics, vol. 42, no. 19, 2009, doi: 10.1088/0022-3727/42/19/194016.
    [12] F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, "Microwave engineering of plasma-assisted CVD reactors for diamond deposition," (in English), J. Phys.-Condes. Matter, Article vol. 21, no. 36, p. 16, Sep 2009, Art no. 364202, doi: 10.1088/0953-8984/21/36/364202.
    [13] W. Tan and T. A. Grotjohn, "MODELING THE ELECTROMAGNETIC-EXCITATION OF A MICROWAVE CAVITY PLASMA REACTOR," (in English), J. Vac. Sci. Technol. A-Vac. Surf. Films, Article; Proceedings Paper vol. 12, no. 4, pp. 1216-1220, Jul-Aug 1994, doi: 10.1116/1.579298.
    [14] M. P. J. Gaudreau, Patent Specification 4,866,346no. , 1989.
    [15] M. Funer, C. Wild, and P. Koidl, "Simulation and development of optimized microwave plasma reactors for diamond deposition," (in English), Surf. Coat. Technol., Article; Proceedings Paper vol. 116, pp. 853-862, Sep 1999, doi: 10.1016/s0257-8972(99)00233-9.
    [16] K. Hassouni, T. A. Grotjohn, and A. Gicquel, "Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor," (in English), J. Appl. Phys., Article vol. 86, no. 1, pp. 134-151, Jul 1999, doi: 10.1063/1.370710.
    [17] G. J. M. Hagelaar, K. Hassouni, and A. Gicquel, "Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor," (in English), J. Appl. Phys., Article vol. 96, no. 4, pp. 1819-1828, Aug 2004, doi: 10.1063/1.1769607.
    [18] I. Ghanashev, M. Nagatsu, G. Xu, and H. Sugai, "Mode jumps and hysteresis in surface-wave sustained microwave discharges," (in English), Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., Article; Proceedings Paper vol. 36, no. 7B, pp. 4704-4710, Jul 1997, doi: 10.1143/jjap.36.4704.
    [19] H. Sugai, I. Ghanashev, and K. Mizuno, "Transition of electron heating mode in a planar microwave discharge at low pressures," (in English), Appl. Phys. Lett., Article vol. 77, no. 22, pp. 3523-3525, Nov 2000, doi: 10.1063/1.1329322.
    [20] Y. Yasaka, N. Ishii, T. Yamamoto, M. Ando, and M. Takahashi, "Development of a slot-excited planar microwave discharge device for uniform plasma processing," (in English), IEEE Trans. Plasma Sci., Article; Proceedings Paper vol. 32, no. 1, pp. 101-107, Feb 2004, doi: 10.1109/tps.2004.823977.
    [21] C. Tian, T. Nozawa, K. Ishibasi, H. Kameyama, and T. Morimoto, "Characteristics of large-diameter plasma using a radial-line slot antenna," (in English), J. Vac. Sci. Technol. A, Article; Proceedings Paper vol. 24, no. 4, pp. 1421-1424, Jul-Aug 2006, doi: 10.1116/1.2167983.
    [22] M. Ando, K. Sakurai, N. Goto, K. Arimura, and Y. Ito, "A RADIAL LINE SLOT ANTENNA FOR 12 GHZ SATELLITE TV RECEPTION," (in English), IEEE Trans. Antennas Propag., Article vol. 33, no. 12, pp. 1347-1353, Dec 1985, doi: 10.1109/tap.1985.1143526.
    [23] K. Sasai, H. Suzuki, and H. Toyoda, "Low-pressure sustainment of surface-wave microwave plasma with modified microwave coupler," (in English), Jpn. J. Appl. Phys., Article vol. 55, no. 1, p. 5, Jan 2016, Art no. 016203, doi: 10.7567/jjap.55.016203.
    [24] 陳泰元, "外部微波共振腔耦合式表面波電漿源之數值模擬研究," 碩士, 工程與系統科學系, 國立清華大學, 2021.
    [25] 李修竹, "側壁表面波電漿放電研究-微波耦合結構設計與電漿/微波交互作用特性之分析," 碩士, 工程與系統科學系, 國立清華大學, 2022.

    QR CODE