簡易檢索 / 詳目顯示

研究生: 黃翊瑋
Huang, Yi Wei
論文名稱: 尼龍6人造肌肉的機械性質
Mechanical properties of nylon 6 artificial muscle
指導教授: 李三保
Lee,Sanboh
口試委員: 黃健朝
Huang, Chien Chao
蔣東堯
Chiang, Don Yau
薛承輝
Hsueh, Chun Hway
洪健龍
Hung, Chien Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 129
中文關鍵詞: 人造肌肉應力鬆弛潛變拉伸測試
外文關鍵詞: artificial muscle, stress relaxation, creep, tensile test
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尼龍6人造肌肉具有低成本、高強度、輕量、高效能的優勢,因此近年來被廣泛討論。本文探討尼龍6人造肌肉的機械性質,包含潛變、應力鬆弛、熱驅動力及拉伸測試。
    透過退火可達到尼龍6人造肌肉定型的效果,本文設定四種退火溫度,討論退火溫度對於機械性質的影響。潛變及應力鬆弛的結果可以用standard linear solid model得到很好的解釋,所得的鬆弛速率(βc及βS)符合阿瑞尼士方程式,故可以得到βc和βS的活化能。反應活化能隨著退火的溫度上升而下降。
    本文亦探討關於雞肉肌肉纖維和未纏繞尼龍6纖維的機械性質,評估纏繞加工帶來的影響,以及生物肌肉和人造肌肉的比較。拉伸測試結果顯示,未纏繞尼龍6纖維楊式係數最大,而雞肉肌肉纖維最小。三種不同材料都可以用standard linear solid model解釋潛變的結果,所得的鬆弛速率βc都符合阿瑞尼士方程式。未纏繞尼龍6纖維和尼龍6人造肌肉趨勢相同,反應活化能隨著退火的溫度上升而下降。
    結晶度的測試中,結晶度隨著退火溫度上升而上升,本文將探討結晶度與機械性質 (潛變、應力鬆弛)的關聯性。


    Artificial muscles from nylon 6 fibers have been widely studied for their low-cost, high-strength, light weight, and high performance. We investigate mechanical properties of nylon 6 artificial muscle including creep, stress relaxation, thermal actuation force, and tensile tests.
    Shape of nylon 6 artificial muscle can be fixed after annealing, and we apply four different annealing temperatures to study the influence of annealing temperature on mechanical properties. We use standard linear solid model to fit the creep and stress relaxation data, and the relaxation rate (βc and βS) satisfies the Arrhenius equation. The activation energy decreases with increasing annealing temperature.
    We also investigate the mechanical properties of nylon 6 non-twisted fibers and chicken muscle fibers to evaluate the influence of twist insertion and the difference between natural muscle and artificial muscle. In tensile tests, nylon 6 non-twisted fibers have largest Young’s modulus and chicken muscle fibers have the smallest. In creep tests, these three materials all follow standard linear model, and the relaxation rates (βc) satisfy the Arrhenius equation. Like nylon 6 artificial muscles, the activation energy in the creep test decreases with increasing annealing temperature for nylon 6 non-twisted fibers.
    The studies of crystallinity show that crystallinity increases with increasing annealing temperature. We discuss the influence of crystallinity on creep tests and stress relaxation.  

    Contents Acknowledgments I Abstract II 摘要 III Contents Ⅳ Chapter 1 Introduction 1 Chapter 2 Experimental Procedure 22 Chapter 3 Tensile Test 33 Chapter 4 Creep Test 48 Chapter 5 Stress Relaxation 83 Chapter 6 Thermal Actuation Force 98 Chapter 7 Crystallinity 105 Chapter 8 Morphology of Chicken Muscle 115 Chapter 9 Conclusions 121 References 124

    References
    1. G. A. Thibodeau, K. T. Patton. Structure & Function of the Body. Elsevier, 62-63 (2011).
    2. F. H. Martini. Anatomy and Physiology. Rex Bookstore, Inc., 107 (2007)
    3. R. C. Henrikson, G. I. Kaye, J. E. Mazurkiewicz. Histology. Lippincott Williams & Wilkins, 83-84 (1997).
    4. F. H. Martini. Essentials of anatomy & physiology. Pearson Education, Inc. (2010).
    5. Wikibooks contributors. Human physiology. Wikibooks contributors, 107 (2006-2007).
    6. E. Tornberg, G. Von Seth, A. Goransson. Influence of aging time, storage temperature and percentage lean on the eating quality of pork and its relationship to instrumental and structural parameters. Sciences des Aliments. 14, 373-385 (1994).
    7. C. L. Davey, K. V. Gilbert. Temperature-dependent cooking toughness in beef. J Sci Food Agric. 25, 931-938 (1974).
    8. R. H. Locker, D. J. C Wild, G. J. Daines. Tensile properties of cooked beef in relation to rigor temperature and tenderness. Meat Sci. 8, 283-299 (1983).
    9. G. Mutungi, P. Purslow, C. Warkup. Structural and mechanical changes in raw and cooked single porcine muscle fibres extended to fracture. Meat Sci. 40, 217-234 (1995).
    10. M. Christensen, P. P. Purslow, L. M. Larsen. The effect of cooking temperature on mechanical properties of whole meat, single muscle fibres and perimysial connective tissue. Meat Sci. 55(3), 301-307 (2000).
    11. P. E. Bouton, P. V. Harris. The effects of cooking temperature and time on some mechanical properties of meat. Journal of Food Science. 37, 140-144 (1972).
    12. R. A. Lawrie. Developments in Meat Science. Elsevier Applied Science, 245-296 (1988)
    13. G. Mutungi, P. Purslow, C. Warkup. Influence of temperature, fiber diameter and conditioning on the mechanical properties of single muscle fibers extended to fracture. Journal of Science Food and Agriculture. 72, 359-366 (1996).
    14. E. Laakkonen. Factors affecting tenderness during heating of meat. Advances in food research. 20, 257-323 (1973).
    15. C. S. Cheng, F. C. Parrish Jr. Heat-induced changes in myofibrillar proteins of bovine longissimus muscle. Journal of Food Science. 44, 22-24 (1979).
    16. G. J. Lewis, P. P. Purslow. The strength and stiffness of perimysial connective tissue isolated from cooked beef muscle. Meat Science. 26, 255-269 (1989).
    17. G. J. Lewis, P. P. Purslow, A. E. Rice. The effect of conditioning on the strength of perimysial connective tissue dissected from cooked meat. Meat Science. 30, 1-12 (1991).
    18. R. J. Winger, C. G. Pope. Osmotic properties of post-rigor beef muscle. Meat Science. 5(5), 355-69 (1981).
    19. M. D. Lima, N. Li, M. Jung de Andrade, S. Fang, J. Oh, G. M. Spinks, M. E. Kozlov, C. S. Haines, D. Suh, J. Foroughi, S. J. Kim, Y. Chen, T. Ware, M. K. Shin, L. D. Machado, A. F. Fonseca, J. D. Madden, W. E. Voit, D. S. Galvão, R. H. Baughman. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 338(6109), 928-932 (2012).
    20. H. Funakubo. Shape Memory Alloys. Taylor & Francis (1987).
    21. S. Hirose, K. Ikuta, Y. Umetani. A new design method of servo-actuators based on the shape memory effect. Theory and Practice of Robots and Manipulators, 339-349 (1985).
    22. D. Homma, Y. Miwa, N. Iguchi. Micro robots and micro mechanisms using shape memory alloy. 3rd Toyota Conf. Integrated Micro Motion Systems: Micromachining Control and Application, 1-21 (1989).
    23. K. Ikuta. Micro/miniature shape memory alloy actuator. Proc. IEEE Conf. on Robotics and Automation, 2156-2161 (1990).
    24. I. W. Hunter, S. Lafontaine, J. M. Hollerbach, P. J. Hunter. Fast reversible NiTi fibers for use in microrobotics. Proc. IEEE Micro Electro Mechanical Systems Conf., 166-170 (1991).
    25. M. Bergamasco, F. Salsedo, P. Dario. Shape memory alloy micro-motors for direct-drive activation of dexterous artificial hands. Sensors Actuators. 17, 115-119 (1989).
    26. J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z.Pytel, S. R. Lafontaine, P. A. Wieringa, I. W. Hunter. Artificial muscle technology: Physical principles and naval prospects. IEEE J. Oceanic Eng. 29, 706–728 (2004).
    27. R. H. Baughman. Conducting polymer artificial muscles. Synth. Met. 78, 339–353 (1996).
    28. E. Smela. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater. 15, 481–494 (2003).
    29. J. L. Tangorra, P. Anquetil, T. Fofonoff, S. Chen, M. Del Zio, I. Hunter, The application of conducting polymers to a biorobotic fin propulsor. Bioinspir. Biomim. 2, 6–17 (2007).
    30. F. Daerden, D. Lefeber. Pneumatic Artificial Muscles: actuators for robotics and automation, European Journal of Mechanical and Environmental Engineering. 47(1) (2002).
    31. Y. L. Park, R. J. Wood. Smart pneumatic artificial muscle actuator with embedded microfluidic sensing. Proc. IEEE Sens. Conf., 689-692. (2013)
    32. S. M. Mirvakili, A. Pazukha, W. Sikkema, C. W. Sinclair, G. M. Spinks, R. H. Baughman, J. D. W. Madden. Niobium nanowire yarns and their application as artificial muscles. Advanced Functional Materials. 23, 4311-4316 (2013).
    33. D. G. Caldwell, G. A. Medrano-Cerda, M. J. Goodwin. Braided pneumatic actuator control of a multi-jointed manipulator. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 423–428 (1993).
    34. C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. W. Madden, S. H. Kim, S. Fang, M. J. Andrade, F. Göktepe, Ö. Göktepe, S. M. Mirvakili, S. Naficy, X. Lepró, J. Oh, M. E. Kozlov, S. J. Kim, X. Xu, B. J. Swedlove, G. G. Wallace, R. H. Baughman. Artificial Muscles from Fishing Line and Sewing Thread. Science. 343, 868-872 (2014).
    35. Y. Sar-Cohen. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. Society of Photo-Optical Instrumentation Engineers. SPIE press, 67-84 (2004).
    36. I. Hunter, S. Lafontaine. A comparison of muscle with artificial actuators. Tech. Dig. IEEE Solid State Sensors Actuators Workshop, 178-185 (1992).
    37. T. W. Davies. Resting length of the human soleus muscle. J. Anatomy. 162, 169–175 (1989).
    38. S. Sharafi, G. Li. A multiscale approach for modeling actuation response of polymeric artificial muscles. Soft Matter. 11, 3833-3843 (2015).
    39. V. B. Bhandari. Design of Machine Elements. Tata McGraw-Hill Education, 395 (2010)
    40. A. E. Love. The Mathematical Theory of Elasticity. Dover Publications, 414–417 (1944).
    41. L. E. Nielsen, R. F. Landel. Mechanical properties of polymers and composites. Marcel Dekker, Inc, 109-110 (1993).
    42 Z. Zhang, M. H. Litt, L. Zhu. Unified Understanding of Ferroelectricity in n‑Nylons: Is the Polar Crystalline Structure a Prerequisite? Macromolecules. 49(8), 3070-3082 (2016).
    43. B. D'Alò, G. Coppola, B. Pallesi. Studies of crystalline forms of nylon-6 by X-ray and i.r. spectrophotometry. Polymer. 15, 130-132 (1974).
    44. N. Mashmood, M. Islam, A. Hameed, S. Saeed. Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties. Polymers. 5(4), 1380-1391 (2013).
    45. Y. Kinoshita. An investigation of the structures of polyamide series. Macromolecular Chemistry and Physics. 33, 1-20 (1959).
    46. S. M. Aharoni. n-Nylons: Their Synthesis, Structure, and Properties;
    J. Wiley & Sons (1997).
    47. A. Galeski, A. S. Argon, R. E. Cohen. Deconvolution of x-ray diffraction data to elucidate plastic deformation mechanisms in the uniaxial extension of bulk nylon 6. Macromolecules. 24(13), 3945-3952 (1991).
    48. Y.S. Park, T. Hatae, H. Itoh, M.Y. Jang, Y. Yamazaki. High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells. Electrochimica Acta. 50, 595-599 (2004).
    49. Y. Kong, J. N. Hay. The measurement of the crystallinity of polymers by DSC. Polymer. 43, 3873-3878 (2002).
    50. S. N. Khotimah, S. Viridi, Widayani, Khairurrijal. The dependence of the spring constant in the linear range on spring parameters. Physics Education. 46, 540-543 (2011).
    51. S. Z. D. Cheng. Handbook of Thermal Analysis and Calorimetry. Elsevier, 399 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE