簡易檢索 / 詳目顯示

研究生: 鄒孟珊
Tsou, Meng-Shan
論文名稱: 乙醇水溶液在單一漸擴微流道之對流沸騰研究
Convective Boiling of Ethanol-Water Mixtures in a Single Diverging Micro-channel
指導教授: 潘欽
Pan, Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 雙成份微流道流沸騰沸騰熱傳臨界熱通率
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用乙醇水溶液發展一種擁有低壓降、高穩定度但仍具有高熱傳能力之微流道蒸發器。研究中使用以微機電技術製成之矽質漸擴微流道,其水力直徑為147μm,漸擴角度為1°,藉由改變莫耳分率及質量通率以探討雙成份液體於微流道沸騰熱傳與雙相流動現象。
    本研究發現,改變乙醇濃度及流量對流動型態有顯著地及沸騰熱傳影響。於莫耳分率為0.1時,液膜破碎散佈之熱通率區間比其他莫耳分率大,且呈現最大臨界熱通率。其可能原因為莫耳分率為0.1之溶液具有較大馬倫哥尼效應(Marangoni effect),使得液體因表面張力作用的關係更容易趨向於三相接觸線而形成蛇形流(rivulet flow),延遲了液膜乾化進而提升其臨界熱通率。在流量上於相近熱通率下,其沸騰起始點隨著質量通率的增加而遠離流道入口儲槽。
    流量的改變對熱傳亦有明顯的影響。單相流動時熱通率隨著流量的增加而上升;臨界熱通率(critical heat flux, CHF)沸騰隨著質量通率的增大而近乎線性的增加。本研究以本研究團隊先前提出之臨界熱通率預估式( ),將乙醇水溶液之性質代入與實驗值比較,得平均絕對誤差(mean absolute error, MAE)為8.49%,顯示實驗值與預估式有很好的吻合度。
    濃度及流量對壓降亦有顯著的影響。沸騰起始前,乙醇水溶液及純乙醇之壓降較純水大,但其壓降與純水有相同的趨勢,皆隨熱通率或壁溫增加而減少,亦隨著質量流量的增加而上升。沸騰起始後因熱通率或壁溫的增加,使得流道內空泡分率的提升,造成壓降大幅升高。在雙相壓降趨勢上,低與中熱通率時,於相同壁過熱度或熱通率下,壓降不隨莫耳分率之改變產生明顯且規律的變化,但於高熱通率時變化較明顯,其中以莫耳分率0.1最高,因其具有最高之臨界熱通率。


    摘 要 i 誌 謝 ii 目 錄 iii 表目錄 vii 圖目錄 viii 符號說明 x 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 本文架構 5 第二章 文獻回顧 6 2.1混合液體之研究回顧 6 2.2流道之沸騰及臨界熱通率研究回顧 8 2.3臨界熱通率預估式研究回顧 10 2.4表面張力對雙成份流體之影響 12 2.5雙成份混合液文獻回顧之心得與結論 14 第三章 乙醇水溶液熱物化性質計算 15 3.1 純物質的物理性質 15 3.1.1 氣體密度 15 3.1.2 液體密度 16 3.1.3 飽和蒸氣壓 16 3.1.4 表面張力 16 3.1.5 液體黏滯係數 17 3.1.6 液態比熱 17 3.2 混合物的物理性質 19 3.2.1 氣液平衡相圖 19 3.2.2 混合氣體密度 21 3.2.3 混合液體密度 22 3.2.4 混合液表面張力 23 3.2.5 混合液之馬倫哥尼數 25 3.2.6 混合液體比熱 27 3.2.7 混合液之蒸發□熱 27 第四章 實驗方法與步驟 30 4.1 實驗設備環路 30 4.1.1 高效能層析幫浦與精密電子天秤 31 4.1.1.1高效能層析幫浦 31 4.1.1.2 精密電子天秤 31 4.1.2 測試段及加熱系統 31 4.1.2.1測試段 31 4.1.2.2 加熱系統 32 4.1.3 實驗量測及數據擷取 33 4.1.3.1 溫度量測 33 4.1.3.2 壓力量測 34 4.1.3.3 數據擷取 34 4.1.4 實驗影像擷取系統 35 4.1.4.1 高速攝影機 35 4.1.4.2 可變焦顯微光學系統 35 4.2 微流道製作 35 4.2.1 微流道製成步驟 35 4.2.2 人工成核址 37 4.4 實驗步驟 39 4.5 熱傳分析計算 40 第五章 實驗結果與討論 44 5.1 雙相流流譜 44 5.1.1 雙相流動型態 44 5.1.2不同莫耳分率下之雙相流動型態 51 5.1.3不同質量通率下之雙相流動型態 56 5.2 沸騰曲線 62 5.2.1莫耳分率對熱通率之影響 62 5.2.2質量通率對熱通率之影響 65 5.2.3 臨界熱通率之預估模式 66 5.3 壓降曲線 69 5.3.1 莫耳分率對壓降之影響 69 5.3.2 質量通率對壓降之影響 71 第六章 結論與建議 73 6.1 本論文研究成果 73 6.2 未來研究建議 74 參考文獻 76 附 錄 79 附錄A –氣液平衡圖計算流程 79 附錄B –實驗數據 82

    [1] D.B. Tuckerman, R.F.W. Pease, High-Performance Heat Sinking for VLSI, Electron Devic Lett 2(1981) 126-129.
    [2] I. Mudawar, D. Bharathan, K. Kelly, S. Narumanchi, Two-Phase Spray Cooling of Hybrid Vehicle Electronics, Ieee T Compon Pack T 32(2009) 501-512.
    [3] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, J. Wiley, New York, 2002.
    [4] 林伯翰, 甲醇水溶液在單一漸擴微流道之對流沸騰研究, 碩士論文, 國立清華大學, 民國 99年.
    [5] W.R. Vanwijk, A.S. Vos, S.J.D. Vanstralen, Heat Transfer to Boiling Binary Liquid Mixtures, Chem Eng Sci 5(1956) 68-80.
    [6] W. Rose, H. Gilles, V. Uhl, Subcooled Boiling Heat Transfer to Aqueous Binary Mixtures, Heat transfer, Houston, 1963.
    [7] Kutateladze.Ss, Bobrovic.Gi, I.I. Gogonin, Mamontov.Nn, Moskvich.Vn, Critical Heat Flux at Pool Boiling of Some Binary Liquid Mixtures, Chem Eng Prog 62(1966).
    [8] P. Sivagnanam, Y.B.G. Varma, Subcooled Boiling of Binary Mixtures under Conditions of Forced Convection, Experimental Thermal and Fluid Science 3(September, 1990) 515-522.
    [9] X.F. Peng, G.P. Peterson, B.X. Wang, Flow boiling of binary mixtures in microchanneled plates, Int J Heat Mass Tran 39(1996) 1257-1264.
    [10] 施明賢, 甲醇/水混合系統在微流道內以控制熱通率條件加熱之流沸騰熱傳探討, 碩士論文, 國立臺灣科技大學, 民國 95年.
    [11] H.Y. Wu, X.Y. Wu, Z. Wei, Flow friction and heat transfer of ethanol-water solutions through silicon microchannels, Journal of Micromechanics and Microengineering 19(2009).
    [12] G.M. Lazarek, S.H. Black, Evaporative Heat-Transfer, Pressure-Drop and Critical Heat-Flux in a Small Vertical Tube with R-113, Int J Heat Mass Tran 25(1982) 945-960.
    [13] L.A. Jiang, M. Wong, Y. Zohar, Phase change in microchannel heat sinks with integrated temperature sensors, Journal of Microelectromechanical Systems 8(1999) 358-365.
    [14] S. Kandlikar, M. Steinke, S. Tian, L. Campbell, High-speed photographic observation of flow boiling of water in parallel mini-channels, 35th National Heat Transfer Coference, 2001, pp. 675-684.
    [15] L. Zhang, J.M. Koo, L. Jiang, M. Asheghi, K.E. Goodson, J.G. Santiago, T.W. Kenny, Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions, Journal of Microelectromechanical Systems 11(2002) 12-19.
    [16] W.L. Qu, I. Mudawar, Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, Int J Heat Mass Tran 46(2003) 2737-2753.
    [17] W.L. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, Int J Heat Mass Tran 47(2004) 2045-2059.
    [18] A. Kosar, C.J. Kuo, Y. Peles, Boiling heat transfer in rectangular microchannels with reentrant cavities, Int J Heat Mass Tran 48(2005) 4867-4886.
    [19] Y.Q. Xie, J.Z. Yu, Z.H. Zhao, Experimental investigation of flow and heat transfer for the ethanol-water solution and FC-72 in rectangular microchannels, Heat Mass Transfer 41(2005) 695-702.
    [20] C.T. Lu, C. Pan, Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels Proc. 13th Int. Heat Transfer Conf., (Sydney, Australia, 2006).
    [21] P.C. Lee, C. Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, Journal of Micromechanics and Microengineering 18(2008).
    [22] C.T. Lu, C. Pan, A highly stable microchannel heat sink for convective boiling, Journal of Micromechanics and Microengineering 19(2009).
    [23] P.H. LIn, B.R. Fu, C. Pan, Critical heat flux on flow boiling of methanol-water mixtures in diverging microchannel with artitical cavities, Int J Heat Mass Tran (submitted)(2010).
    [24] D.M. Li, Z.B. He, Marangoni effect and liquid membrane oscillation, Prog Chem 15(2003) 1-8.
    [25] J. Hovestreijdt, The Influence of the Surface Tension Difference on the Boiling of Mixtures, Chem Eng Sci 18(1963) 631-639.
    [26] Y. Sha, H. Cheng, G.Z. Yu, Marangoni effect in the mass and heat transport processes, Prog Chem 15(2003) 9-17.
    [27] J. Kern, P. Stephan, Theoretical model for nucleate boiling heat and mass transfer of binary mixtures, J Heat Trans-T Asme 125(2003) 1106-1115.
    [28] A.S. Vos, S.J.D. Vanstralen, Heat Transfer to Boiling Water-Methylethylketone Mixtures, Chem Eng Sci 5(1956) 50-56.
    [29] D.L. Bennett, J.C. Chen, Forced Convective Boiling in Vertical Tubes for Saturated Pure Components and Binary-Mixtures, Aiche J 26(1980) 454-461.
    [30] H. Ross, R. Radermacher, M. Dimarzo, D. Didion, Horizontal Flow Boiling of Pure and Mixed Refrigerants, Int J Heat Mass Tran 30(1987) 979-992.
    [31] M. MONDE, T. INOUE, Review on Heat Transfer in boiling of Binary Mixtures, OTEC 6(1997) 1-17.
    [32] G.P. Celata, M. Cumo, T. Setaro, A Review of Pool and Forced Convective Boiling of Binary-Mixtures, Experimental Thermal and Fluid Science 9(1994) 367-381.
    [33] L.X. Cheng, D. Mewes, Review of two-phase flow and flow boiling of mixtures in small and mini channels, International Journal of Multiphase Flow 32(2006) 183-207.
    [34] C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamics, Engironmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals., McGraw-Hill Professional, New York, 1999.
    [35] J.M. Smith, H.C.V. Ness, M.M. Abbott, Introduction to chemical engineering thermodynamics, McGraw-Hill, New York, 2001.
    [36] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, (Eds), The properties of gases and liquids, McGraw-Hill, New York, 2001.
    [37] S. Ohe, Vapor-liquid equilibrium data, Kodansha, Tokyo, Japan, 1989.
    [38] H.G. Rackett, Equation of State for Saturated Liquids, J Chem Eng Data 15(1970) 514-517.
    [39] M. Tamura, M. Kurata, H. Odani, Practical Method for Estimating Surface Tensions of Solutions, B Chem Soc Jpn 28(1955) 83-88.
    [40] Y. Fugita, Q. Bai, Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number, International Journal of Refrigeration 20(1997) 616-622.
    [41] M.J. Moran, H.N. Shapiro, Fundamentals of engineering thermodynamics, Wiley, New York, 2003.
    [42] J.J. Hwang, F.G. Tseng, C. Pan, Ethanol-CO2 two-phase flow in diverging and converging microchannels, International Journal of Multiphase Flow 31(2005) 548-570.
    [43] F.P. Incropera, D.P. DeWitt, Fundamentals of heat and mass transfer, Wiley, New York, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE