研究生: |
鄒孟珊 Tsou, Meng-Shan |
---|---|
論文名稱: |
乙醇水溶液在單一漸擴微流道之對流沸騰研究 Convective Boiling of Ethanol-Water Mixtures in a Single Diverging Micro-channel |
指導教授: |
潘欽
Pan, Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 雙成份 、微流道 、流沸騰 、沸騰熱傳 、臨界熱通率 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用乙醇水溶液發展一種擁有低壓降、高穩定度但仍具有高熱傳能力之微流道蒸發器。研究中使用以微機電技術製成之矽質漸擴微流道,其水力直徑為147μm,漸擴角度為1°,藉由改變莫耳分率及質量通率以探討雙成份液體於微流道沸騰熱傳與雙相流動現象。
本研究發現,改變乙醇濃度及流量對流動型態有顯著地及沸騰熱傳影響。於莫耳分率為0.1時,液膜破碎散佈之熱通率區間比其他莫耳分率大,且呈現最大臨界熱通率。其可能原因為莫耳分率為0.1之溶液具有較大馬倫哥尼效應(Marangoni effect),使得液體因表面張力作用的關係更容易趨向於三相接觸線而形成蛇形流(rivulet flow),延遲了液膜乾化進而提升其臨界熱通率。在流量上於相近熱通率下,其沸騰起始點隨著質量通率的增加而遠離流道入口儲槽。
流量的改變對熱傳亦有明顯的影響。單相流動時熱通率隨著流量的增加而上升;臨界熱通率(critical heat flux, CHF)沸騰隨著質量通率的增大而近乎線性的增加。本研究以本研究團隊先前提出之臨界熱通率預估式( ),將乙醇水溶液之性質代入與實驗值比較,得平均絕對誤差(mean absolute error, MAE)為8.49%,顯示實驗值與預估式有很好的吻合度。
濃度及流量對壓降亦有顯著的影響。沸騰起始前,乙醇水溶液及純乙醇之壓降較純水大,但其壓降與純水有相同的趨勢,皆隨熱通率或壁溫增加而減少,亦隨著質量流量的增加而上升。沸騰起始後因熱通率或壁溫的增加,使得流道內空泡分率的提升,造成壓降大幅升高。在雙相壓降趨勢上,低與中熱通率時,於相同壁過熱度或熱通率下,壓降不隨莫耳分率之改變產生明顯且規律的變化,但於高熱通率時變化較明顯,其中以莫耳分率0.1最高,因其具有最高之臨界熱通率。
[1] D.B. Tuckerman, R.F.W. Pease, High-Performance Heat Sinking for VLSI, Electron Devic Lett 2(1981) 126-129.
[2] I. Mudawar, D. Bharathan, K. Kelly, S. Narumanchi, Two-Phase Spray Cooling of Hybrid Vehicle Electronics, Ieee T Compon Pack T 32(2009) 501-512.
[3] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, J. Wiley, New York, 2002.
[4] 林伯翰, 甲醇水溶液在單一漸擴微流道之對流沸騰研究, 碩士論文, 國立清華大學, 民國 99年.
[5] W.R. Vanwijk, A.S. Vos, S.J.D. Vanstralen, Heat Transfer to Boiling Binary Liquid Mixtures, Chem Eng Sci 5(1956) 68-80.
[6] W. Rose, H. Gilles, V. Uhl, Subcooled Boiling Heat Transfer to Aqueous Binary Mixtures, Heat transfer, Houston, 1963.
[7] Kutateladze.Ss, Bobrovic.Gi, I.I. Gogonin, Mamontov.Nn, Moskvich.Vn, Critical Heat Flux at Pool Boiling of Some Binary Liquid Mixtures, Chem Eng Prog 62(1966).
[8] P. Sivagnanam, Y.B.G. Varma, Subcooled Boiling of Binary Mixtures under Conditions of Forced Convection, Experimental Thermal and Fluid Science 3(September, 1990) 515-522.
[9] X.F. Peng, G.P. Peterson, B.X. Wang, Flow boiling of binary mixtures in microchanneled plates, Int J Heat Mass Tran 39(1996) 1257-1264.
[10] 施明賢, 甲醇/水混合系統在微流道內以控制熱通率條件加熱之流沸騰熱傳探討, 碩士論文, 國立臺灣科技大學, 民國 95年.
[11] H.Y. Wu, X.Y. Wu, Z. Wei, Flow friction and heat transfer of ethanol-water solutions through silicon microchannels, Journal of Micromechanics and Microengineering 19(2009).
[12] G.M. Lazarek, S.H. Black, Evaporative Heat-Transfer, Pressure-Drop and Critical Heat-Flux in a Small Vertical Tube with R-113, Int J Heat Mass Tran 25(1982) 945-960.
[13] L.A. Jiang, M. Wong, Y. Zohar, Phase change in microchannel heat sinks with integrated temperature sensors, Journal of Microelectromechanical Systems 8(1999) 358-365.
[14] S. Kandlikar, M. Steinke, S. Tian, L. Campbell, High-speed photographic observation of flow boiling of water in parallel mini-channels, 35th National Heat Transfer Coference, 2001, pp. 675-684.
[15] L. Zhang, J.M. Koo, L. Jiang, M. Asheghi, K.E. Goodson, J.G. Santiago, T.W. Kenny, Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions, Journal of Microelectromechanical Systems 11(2002) 12-19.
[16] W.L. Qu, I. Mudawar, Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, Int J Heat Mass Tran 46(2003) 2737-2753.
[17] W.L. Qu, I. Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, Int J Heat Mass Tran 47(2004) 2045-2059.
[18] A. Kosar, C.J. Kuo, Y. Peles, Boiling heat transfer in rectangular microchannels with reentrant cavities, Int J Heat Mass Tran 48(2005) 4867-4886.
[19] Y.Q. Xie, J.Z. Yu, Z.H. Zhao, Experimental investigation of flow and heat transfer for the ethanol-water solution and FC-72 in rectangular microchannels, Heat Mass Transfer 41(2005) 695-702.
[20] C.T. Lu, C. Pan, Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels Proc. 13th Int. Heat Transfer Conf., (Sydney, Australia, 2006).
[21] P.C. Lee, C. Pan, Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section, Journal of Micromechanics and Microengineering 18(2008).
[22] C.T. Lu, C. Pan, A highly stable microchannel heat sink for convective boiling, Journal of Micromechanics and Microengineering 19(2009).
[23] P.H. LIn, B.R. Fu, C. Pan, Critical heat flux on flow boiling of methanol-water mixtures in diverging microchannel with artitical cavities, Int J Heat Mass Tran (submitted)(2010).
[24] D.M. Li, Z.B. He, Marangoni effect and liquid membrane oscillation, Prog Chem 15(2003) 1-8.
[25] J. Hovestreijdt, The Influence of the Surface Tension Difference on the Boiling of Mixtures, Chem Eng Sci 18(1963) 631-639.
[26] Y. Sha, H. Cheng, G.Z. Yu, Marangoni effect in the mass and heat transport processes, Prog Chem 15(2003) 9-17.
[27] J. Kern, P. Stephan, Theoretical model for nucleate boiling heat and mass transfer of binary mixtures, J Heat Trans-T Asme 125(2003) 1106-1115.
[28] A.S. Vos, S.J.D. Vanstralen, Heat Transfer to Boiling Water-Methylethylketone Mixtures, Chem Eng Sci 5(1956) 50-56.
[29] D.L. Bennett, J.C. Chen, Forced Convective Boiling in Vertical Tubes for Saturated Pure Components and Binary-Mixtures, Aiche J 26(1980) 454-461.
[30] H. Ross, R. Radermacher, M. Dimarzo, D. Didion, Horizontal Flow Boiling of Pure and Mixed Refrigerants, Int J Heat Mass Tran 30(1987) 979-992.
[31] M. MONDE, T. INOUE, Review on Heat Transfer in boiling of Binary Mixtures, OTEC 6(1997) 1-17.
[32] G.P. Celata, M. Cumo, T. Setaro, A Review of Pool and Forced Convective Boiling of Binary-Mixtures, Experimental Thermal and Fluid Science 9(1994) 367-381.
[33] L.X. Cheng, D. Mewes, Review of two-phase flow and flow boiling of mixtures in small and mini channels, International Journal of Multiphase Flow 32(2006) 183-207.
[34] C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamics, Engironmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals., McGraw-Hill Professional, New York, 1999.
[35] J.M. Smith, H.C.V. Ness, M.M. Abbott, Introduction to chemical engineering thermodynamics, McGraw-Hill, New York, 2001.
[36] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, (Eds), The properties of gases and liquids, McGraw-Hill, New York, 2001.
[37] S. Ohe, Vapor-liquid equilibrium data, Kodansha, Tokyo, Japan, 1989.
[38] H.G. Rackett, Equation of State for Saturated Liquids, J Chem Eng Data 15(1970) 514-517.
[39] M. Tamura, M. Kurata, H. Odani, Practical Method for Estimating Surface Tensions of Solutions, B Chem Soc Jpn 28(1955) 83-88.
[40] Y. Fugita, Q. Bai, Critical heat flux of binary mixtures in pool boiling and its correlation in terms of Marangoni number, International Journal of Refrigeration 20(1997) 616-622.
[41] M.J. Moran, H.N. Shapiro, Fundamentals of engineering thermodynamics, Wiley, New York, 2003.
[42] J.J. Hwang, F.G. Tseng, C. Pan, Ethanol-CO2 two-phase flow in diverging and converging microchannels, International Journal of Multiphase Flow 31(2005) 548-570.
[43] F.P. Incropera, D.P. DeWitt, Fundamentals of heat and mass transfer, Wiley, New York, 1996.