簡易檢索 / 詳目顯示

研究生: 陳星達
Chen, Sing-Da
論文名稱: 電鍍成長鎳金多層一維奈米結構於氧化鋁模板之製程
Fabrication of Ni/Au multilayered nanowire arrays in anodic aluminum oxide
指導教授: 蔡哲正
Tsai, Cho-Jen
口試委員: 俎永熙
林居南
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 陽極氧化鋁電鍍鎳金
外文關鍵詞: AAO, electrodeposition, NiAu
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    Fabrication of one-dimensional nanowires has been researched for many years. Furthermore the multilayered nanowires were also synthesized to investigate their fundamental properties for various applications. By use of Anodic Alumina Oxide (AAO) as template, the nanowires synthesized by electrochemical method could be fabricated in large scale with low cost and high throughput.

    In this work, Ni/Au multilayered nanowires were synthesized by dual-bath method. Ni layers were deposited by electrodeposition and Au layers were produced by Galvanic replacement. The structures were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), and their magnetic properties were characterized by Vibrating Sample Magnetometer (VSM). The results shown that a sharp Ni/Au interface and regular structures with nanowire diameter of ca. 265 nm is obtained. The diffraction pattern of Ni layer indicated that the nanowires is polycrystalline structures. Magnetic measurement by VSM showed that easy-magnetic directions are dominated by shape anisotropy of Ni layers.

    Diffusion behavior between Ni/Au layers were also studied by annealing at high temperatures. X-Ray diffractometer (XRD) was used to identify the phases after annealing. The results showed that NiAu metastable phase appeared at 650 oC accompanying with NiO phase. The NiO is due to oxidation of Ni at high temperature during venting the chamber. Annealing at 750 oC caused agglomeration of Au atoms and the XRD cannot detect NiAu phase. Besides, the NiAu phase tends to separate at 750 oC. Magnetic measurement also showed a decrease of coercive field as the annealing temperature rises.


    CONTENTS 摘要 I Abstract II 誌謝 III CONTENTS IV List of figures VI Chapter 1 Introduction 1 1.1 Background 1 1.2 Fabrication of 1-D nanostructures 1 1.3Motivation 3 Chapter 2 Literatures Review 4 2.1 Anodic aluminum oxide (AAO) 4 2.1.1 Formation Mechanism of AAO 4 2.1.2 Anodization Conditions 7 2.1.3 Application of AAO 7 2.2 Electrodeposition using AAO templates 10 2.2.1 Direct current electrodeposition 10 2.2.2 Alternating current electrodeposition 11 2.2.3 Pulsed electrodeposition 12 2.3 Magnetic nanowires 13 2.3.1 Characteristics of magnetic nanowires 13 2.3.2 Shape anisotropy 13 2.3.3 Magnetic multilayered nanowires 14 2.4 Ni-Au alloy system 15 2.4.1 Phase diagram 15 2.4.2 JCPDS for Ni-Au alloy 15 2.4.3 Ni/Au multilayered nanowires 16 Chapter 3 Experimental Instruments and Procedures 18 3.1 Experimental Procedures 19 3.1.1 Sputter Cu film on AAO 19 3.1.2 Electrochemical deposition of Ni/Au multilayered nanowires 19 3.1.3 Extraction of Ni/Au nanowires 19 3.1.4 Annealing in vacuum at high temperature 19 3.2 Experimental instruments 20 3.2.1 Sputtering system 20 3.2.2 Electrochemical deposition cell 20 3.2.4 Annealing Furnace 21 3.3 Analysis Tools 22 3.3.1 Scanning Electron Microscope (SEM) 22 3.3.2 Transmission Electron Microscope (TEM) 22 3.3.3 Vibrating Sample Magnetometer (VSM) 23 3.3.4 X-ray Diffractometer 24 3.4 Chemical list 25 Chapter 4 Results and Discussion 26 4.1 Fabrication of Ni/Au nanowires 26 4.1.1 Whatman AAO 26 4.1.2 Sputter Cu on AAO 26 4.1.3 Fabrication of Ni/Au nanowires 27 4.2 Magnetic measurement 34 4.3 Diffusion behavior of Ni/Au 37 Chapter 5 Conclusions 48 Reference 49

    Reference
    [1] A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Detection of CO and O2 Using Tin Oxide Nanowire Sensors, Adv. Mater., 15, No.12, June 17, 2003.
    [2] F. Hernandez-Ramırez, A. Tarancon, O. Casals, J. Arbiol, A. Romano-Rodrıguez, J.R. Morante, High response and stability in CO and humidity measures using a single SnO2 nanowire, Sensors and Actuators B, 121, 3–17, 2007.
    [3] Q. Wan and T. H. Wang, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, Chem. Commun., 3841–3843, 2005.
    [4] X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires, Appl. Phys. Lett. 88, 201907, 2006.
    [5] H. Zhaoa, Y. Li, L. Yang, X. Wu, Synthesis, characterization and gas-sensing property for C2H5OH of SnO2 nanorods, Materials Chemistry and Physics 112, 244–248, 2008.
    [6] F. Patolsky, G. Zheng and C. M. Lieber, nanowire-based biosensors, Analytical Chemistry, July 1, 4261-4269, 2006.
    [7] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Lett., Vol. 9, No. 4, 2009.
    [8] R. He, D. Gao, R. Fan, A. I. Hochbaum, C. Carraro, R. Maboudian, and P. Yang, Si Nanowire Bridges in Microtrenches : Integration of Growth into Device Fabrication, Adv. Mater., 17, 2098-2102, 2005.
    [9] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, One-dimensional nanostructures: Synthesis, Characterization and Applications, Adv. Mater., 15, No 5, March 4, 2003.
    [10] K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, S.F. Fischer, H. Kronmüller, T. Schweinbock, D. Weiss, U. Gösele, High density hexagonal nickel nanowire array, Journal of Magnetism and Magnetic Materials 249, 234–240, 2002.
    [11] K. Nielsch, R. Hertel, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, Switching Behavior of Single Nanowires Inside Dense Nickel Nanowire Arrays, IEEE TRANSACTIONS ON MAGNETICS, Vol. 38, No. 5, September, 2002.
    [12] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, and U. Gösele, Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett., Vol. 79, No. 9, 27 August, 2001.
    [13] D. J. Sellmyer, M. Zheng and R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, J. Phys.: Condens. Matter 13, R433–R460, 2001.
    [14] M. Chen, L. Sun, J. E. Bonevich, D. H. Reich, C. L. Chien, P. C. Searson, Tuning the response of magnetic suspensions, Appl. Phys. Lett., Vol. 82, No. 19, 12 May, 2003.
    [15] M. Chen and P. C. Searson, Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires, J. Appl. Phys., Vol. 93, No. 10, Parts 2 & 3, 15 May, 2003.
    [16] Y.G. Guo, L.J. Wan, C. F. Zhu, D.L. Yang, D. M. Chen and C. L. Bai, Ordered Ni-Cu Nanowire Array with Enhanced Coercivity, Chem. Mater., 15, 664-667, 2003.
    [17] M. Chen, C. L. Chien, and P. C. Searson, Potential Modulated Multilayer Deposition of Multisegment Cu/Ni Nanowires with Tunable Magnetic Properties, Chem. Mater., 18, 1595-1601, 2006.
    [18] Z. Song, Y. Xie, S. Yao, H. Wang, W. Zhang, Z. Tang, Microstructure and magnetic properties of electrodeposited Co/Cu multilayer nanowire arrays, Materials Letters 65, 1562–1564, 2011.
    [19] C. R. Martin, Membrane-Based Synthesis of Nanomaterials, Chem. Mater., Vol. 8, No. 8, 1996.
    [20] J. C. Hulteen and C. R. Martin, A general template-based method for the preparation of nanomaterials, J. Mater. Chem., 7(7), 1075–1087, 1997.
    [21] M. Vazquez, M. Hernandez-Velez, A. Asenjo, D. Navas, K. Pirota, V. Prida, O. Sanchez, J.L. Baldonedo, Preparation and properties of novel magnetic composite nanostructures: Arrays of nanowires in porous membranes, Physica B, 384, 36–40, 2006.
    [22] J. P. O’Sullivan and G. C. Wood, The morphology and mechanism of formation of porous anodic films on aluminum, Proc. Roy. Soc. Lond. A. 317, 511-543, 1970.
    [23] O. Jessensky, F. Muller,a) and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., Vol. 72, No. 10, 9 March, 1998.
    [24] F. Li, L. Zhang, and R. M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater., 10, 2470-2480, 1998.
    [25] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., Vol. 84, No. 11, 1 December, 1998.
    [26] A. T. Shawaqfek and R. E. Baltus, Growth Kinetics and Morphology of Porous Anodic Alumina Films Formed Using Phosphoric Acid, J. Electrochem. Soc., Vol. 145, No. 8, August 1998.
    [27] G. E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films, 297, 192-201, 1997.
    [28] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71 (19), 10 November, 1997.
    [29] H. Xue, H. Li, Y. Yi and H. Hu, Ordered porous anodic aluminum oxide films made by two-step anodization, Surface Review and Letters, Vol. 14, No. 6, 1039-1045, 2007.
    [30] H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, Vol. 268, 1466, 1995.
    [31] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn and U. Gosele, Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule, Nano Lett., Vol. 2, No. 7, 2002.
    [32] Y. Lei and W. K. Chim, Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks, Chem. Mater., 17, 580-585, 2005.
    [33] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gösele, Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template, Adv. Mater., 19, 917–920, 2007.
    [34] Z. Zhang, T. Shimizu, S. Senz and U. Gösele, Ordered High-Density Si [100] Nanowire Arrays Epitaxially Grown by Bottom Imprint Method, Adv. Mater., 21, 2824–2828, 2009.
    [35] J. Huang, S. Y. Chiam, H. H. Tan, S. Wang and W. K. Chim, Fabrication of Silicon Nanowires with Precise Diameter Control Using Metal Nanodot Arrays as a Hard Mask Blocking Material in Chemical Etching, Chem. Mater., 22, 4111–4116, 2010.
    [36] T. M. Whitney, J. S. Jiang, P. C. Searson, C.L.Chien, Fabrication and Magnetic Properties of Arrays of Metallic Nanowires, SCIENCE, Vol. 261, 3 September, 1993.
    [37] K. H. Lee, H. Y. Lee and W. Y. Jeung, Magnetic properties and crystal structures of self-ordered ferromagnetic nanowires by ac electroforming, J. Appl. Phys., Vol. 91, No. 10, 15 May, 2002.
    [38] F. Li, T. Wang, L. Ren and J. Sun, Structure and magnetic properties of Co nanowires in self-assembly arrays, J. Phys.: Condens. Matter 16, 8053-8060, 2004.
    [39] K. Nielsch, F. Muller, A. P. Li and U. Gosele, Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition, Adv. Mater., 12, No. 8, 2000.
    [40] Y. Peng, T. Cullis, G. Möbus, X. Xu and B. Inkson, Nanoscale characterization of CoPt/Pt multilayer nanowires, Nanotechnology, 18, 485704, 2007.
    [41] R. Ferre, K. Ounadjela, J. M. George, L. Piraux and S. Dubois, Magnetization processes in nickel and cobalt electrodeposited nanowires, Phys. Rev.B , 56, 14066, 1997.
    [42] K. Liu, K. Nagodawithana, P. C. Searson, C. L. Chein, Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires, Phys. Rev. B, Vol. 51, No.11, 1995.
    [43] Y. Li, M. Moldovan, D.P. Young, E.J. Podlaha, Electrodeposited Co–Cu/Cu multilayered microposts, Journal of Magnetism and Magnetic Materials 320, 3282–3287, 2008.
    [44] L. F. Liu, W.Y. Zhou, S.S. Xie, O. Albrecht, K. Nielsch, Microstructure and temperature-dependent magnetic properties of Co/Pt multilayered nanowires, Chemical Physics Letters 466, 165–169, 2008.
    [45] H. Wang, L. Zhang, L. Li, E. Jia, X. Zhao, Fabrication and magnetic properties of FePt/Ag multilayered nanowires, Journal of Magnetism and Magnetic Materials 322, 3555–3557, 2010.
    [46] V. dos Santos, C.A. Kuhnen, Electronic structure and magnetic properties of Ni/Au and Ni/Cu bilayers, Thin Solid Films, 350, 258-263, 1999.
    [47] N. Togasaki,Y. Okinaka, T. Homma, T. Osaka, Preparation and characterization of electroplated amorphous gold-nickel alloy film for electrical cantact applications, Electrochim. Acta 51, 882–887, 2005.
    [48] A. M. Molenbroek, J. K. Nørskov, B. S. Clausen, Structure and Reactivity of Ni-Au Nanoparticle Catalysts, J. Phys. Chem. B, 105, 5450–5458, 2001.
    [49] A. R. Urbach, J. C. Love, M. G. Prentiss and G. M. Whitesides, Sub-100 nm Confinement of Magnetic Nanoparticles Using Localized Magnetic Field Gradients, J. AM. CHEM. SOC., 125, 12704-12705, 2003.
    [50] J. C. Love, A. R. Urbach, M. G. Prentiss and G. M. Whitesides, Three-Dimensional Self-Assembly of Metallic Rods with Submicron Diameters Using Magnetic Interactions, J. AM. CHEM. SOC., 125, 12696-12697, 2003.
    [51] L. A. Bauer, D. H. Reich and G. J. Meyer, Selective Functionalization of Two-Component Magnetic Nanowires, Langmuir, 19, 7043-7048, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE