研究生: |
吳泰興 Wu, Tai-Sing |
---|---|
論文名稱: |
利用同步輻射X光技術、光學方法與第一原理計算對氧化物奈米晶體之研究 Studies of Nanocrystal Oxide Materials Using Synchrotron-Radiation X-ray Techniques, Optical Methods, and First-principles Calculations |
指導教授: |
蘇雲良
Soo, Yun-Liang |
口試委員: |
諸柏仁
Chu, Peter Po-Jen 鄭弘泰 Jeng, Horng-Tay 黃玉山 Huang, Yu-Shan 湯茂竹 Tang, Mau-Tsu |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 氧化鈰 、氧缺陷 、能隙工程 |
外文關鍵詞: | Co-doped CeO2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在含有氧化鈰的觸媒材料中,其催化能力受到所含Ce3+濃度與材料的能隙所影響,許多研究也致力於提高材料中Ce3+濃度與縮小材料的能隙。
在本論文的前半部,我們探討了鈰原子在金屬氧化物中的光致還原現象。我們發現當照射到X光時,材料中的鈰離子會由四價轉變成三價,其催化能力亦顯著提升。透過X光吸收光譜的量測與第一原理計算,我們提出了由價帶電洞驅動的機制來解釋此一觀察到的現象。在論文後半部,我們提出了兩種操控氧化鈰能隙的方法。我們發現在鈷摻雜的氧化鈰中,經高溫退火後材料能隙大幅變小。藉由X光吸收光譜的量測配合理論計算,發現經高溫退火後鈷原子周圍的氧配位結構由六配位轉變成四配位,使得鈷3d軌域由原先的eg與t2g能級分裂變得更加雜化,因而造成材料能隙的減小並使材料的催化能力增加。此外我們也展示了在未鍛燒樣品、鈷周圍結構仍維持六配位的情況下,透過釔與鈷原子的共摻雜來操控材料能隙。隨著共摻雜的釔濃度上升,材料的能隙逐漸變小,透過第一原理理論計算,我們發現隨著材料當中氧缺陷濃度的增加,氧的2p軌域對於鈷的3d軌域的斥力減少,使得鈷3d軌域的eg與t2g能級分裂減小,而導致材料能隙變窄。
Owing to the fact that the catalytic activity of ceria-containing catalysts is largely affected by its Ce3+ concentration and band gap value, in this dissertation, we decided to study the photoreduction effect on Ce ion of oxide materials, using x-ray techniques and the first-principles calculations based on density functional theory. When irradiated under hard x-ray, the Ce4+ ions of the materials are gradually reduced to Ce3+ ions. The increased Ce3+ concentration enhanced the catalytic activity of the materials. A valance-hole-dominated mechanism is proposed to explain the observed photoreduction effect.
We also report the observed dramatic band gap narrowing of Co-doped CeO2 nanocrystals after thermal annealing. As demonstrated by x-ray absorption fine structures, thermal annealing causes an oxygen coordination rearrangement around Co atoms from an octahedral coordination to a square-planar coordination. First-principles calculations reveal two stable oxygen coordination types surrounding Co, consistent with the experimental observation. The band gap reduction is accompanied by a substantial enhancement of catalytic activity.
Finally, we demonstrate a controllable modulation of energy band gaps of CeO2 nanocrystals by incorporating heterovalent dopant elements into the material. In (Co, Y) codoped CeO2, the Co dopant atoms were found to act as a switch that turns on the dormant effect of Y-modulated band gap reduction. As revealed by density functional theory calculations, a Co 3d band that hybridizes with Ce 4f band was lowered due to reduced O 2p repulsion, which arose from oxygen vacancies. The Y doping gave rise to the observed band gap narrowing effect.
1. J. Tian, Y. Sang, Z. Zhao, W. Zhou, D. Wang, X. Kang, H. Liu, J. Wang, S. Chen, H. Cai, and H. Huang, Small 9, 3864 (2013).
2. W. Shi, Y. Li, J. Hou, H. Lv, X. Zhao, P. Fang, F. Zheng, and S. Wang, J. Mater. Chem. A 1, 728 (2013).
3. N. J. Lawrence, J. R. Brewer, L. Wang, T.-S. Wu, J. Wells-Kingsbury, M. M. Ihrig, G. Wang, Y.-L. Soo, W.-N. Mei, and C. L. Cheung, Nano Lett. 11, 2666 (2011).
4. Z. Wu, M. Li, and S. H. Overbury, J. Catal. 285, 61 (2012).
5. W. Lei, T. Zhang, L. Gu, P. Liu, J. A. Rodriguez, G. Liu, and M. Liu, ACS Catal. 5, 4385 (2015).
6. D. Jiang, W. Wang, L. Zhang, Y. Zheng, and Z. Wang, ACS Catal. 5, 4851 (2015).
7. G. Hua, L. Zhang, G. Fei, and M. Fang, J. Mater. Chem. 22, 6851 (2012).
8. A. Younis, D. Chu, Y. V. Kaneti, and S. Li, Nanoscale 8, 378 (2016).
9. M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, and X. Zhao, ACS Catal. 5, 3278 (2015).
10. J. Zou, Z. Si, Y. Gao, R. Ran, X. Wu, and D. Weng, J. Phys. Chem. C 120, 29116 (2016).
11. T. S. Wu, H. D. Li, Y. W. Chen, S. F. Chen, Y. S. Su, C. H. Chu, C. W. Pao, J. F. Lee, C. H. Lai, H. T. Jeng, S. L. Chang, and Y. L. Soo, Sci. Rep. 5, 15415 (2015).
12. T.-S. Wu, Y. Zhou, R. F. Sabirianov, W. N. Mei, Y.-L. Soo, and C. L. Cheung, Chem. Commun. 52, 5003 (2016).
13. A. D. Liyanage, S. D. Perera, K. Tan, Y. Chabal, and K. J. Balkus Jr., ACS Catal. 4, 577 (2014).
14. M. Nakayama, and M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009).
15. A. Bianconi, A Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo, and J. Petiau, Phys. Rev. B 35, 806 (1987).
16. G. Kaindl, G. Schmiester, E. V. Sampathkumaran, and P. Wachter, Phys. Rev. B 38, 10174 (1988).
17. A. Kotani, J. Elec. Spec. Rel. Phenom. 100, 75 (1999).
18. M. J. Lipp, J. R. Jeffries, H. Cynn, J.-H. Park Klepeis, W. J. Evans, D. R. Mortensen, G. T. Seidler, Y. Xiao, and P. Chow, Phys. Rev. B 93, 064106 (2016).
19. T. Duchoň, M. Aulická, E. F. Schwier, H. Iwasawa, C. Zhao, Y. Xu, K. Veltruská, K. Shimada, and V. Matolín, Phys. Rev. B 95, 165124 (2007).
20. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, Nature 419, 803 (2000).
21. C.-Y. Ruan, F. Vigliotti, V. A. Lobastov, S. Chen, and A. H. Zewail, Proc. Natl. Acad. Sci. 101, 1123 (2004).
22. G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M. Horn-von Hoegen, R. Ernstorfer, and R. J. D. Miller, Nature 458, 56 (2009).
23. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, and R. J. D. Miller, Nature 468, 799 (2010).
24. M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schäfer, and C. Ropers, Science 345, 200 (2014).
25. T. Frigge, B. Hafke, T. Witte, B. Krenzer, C. Streubühr, A. Samad Syed, V. Mikšić Trontl, I. Avigo, P. Zhou, M. Ligges, D. von der Linde, U. Bovensiepen, M. Horn-von Hoegen, S. Wippermann, A. Lücke, S. Sanna, U. Gerstmann, and W. G. Schmidt, Nature 544, 207 (2017).
26. K. Ozawa, M. Emori, S. Yamamoto, R. Yukawa, S. Yamamoto, R. Hobara, K. Fujikawa, H. Sakama, and I. Matsuda, J. Phys. Chem. Lett. 5, 1953 (2014).
27. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)
28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
29. C. W. M. Castleton, J. Kullgren, and K. Hermansson, J. Chem. Phys. 127, 244704 (2007).
30. D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Phys. Rev. B 75, 035109 (2007).
31. T. Zacherle, A. Schriever, R. A. De Souza, and M. Martin, Phys. Rev. B 87, 134104 (2013).
32. H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
33. E. Wuilloud, B. Delley, W. D. Schneider, and Y. Baer, Phys. Rev. Lett. 53, 202 (1984).
34. A. Pfau, K. D. Schierbaum, Surf. Sci. 321, 71 (1994).
35. J. F. Jerratsch, X. Shao, N. Nilius, H. J. Freund, C. Popa, M. V. Ganduglia-Pirovano, A. M. Burow, and J. Sauer, Phys. Rev. Lett. 106, 246801 (2011).
36. X. Shao, J. F. Jerratsch, N. Nilius, and H. J. Freund, Phys. Chem. Chem. Phys. 13, 12646 (2011).
37. T. S. Wu, Y. C. Chen, Y. F. Shiu, H. J. Peng, S. L. Chang, H. Y. Lee, P. P. Chu, C. W. Hsu, L. J. Chou, C. W. Pao, J. F. Lee, J. Kwo, M. Hong, and Y. L. Soo, Appl. Phys. Lett. 101, 022408 (2012)
38. Y. L. Soo, T. S. Wu, C. S. Wang, S. L. Chang, H. Y. Lee, P. P. Chu, C. Y. Chen, L. J. Chou, T. S. Chan, C. A. Hsieh, J. F. Lee, J. Kwo, and M. Hong, Appl. Phys. Lett. 98, 031906 (2011)
39. M. Newville, P. Lïvins, Y. Yacoby, J. J. Rehr and E. A. Stern, Phys. Rev. B 47, 14126 (1993).
40. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
41. A. R. Albuquerque, A. Bruix, Iêda M. G. dos Santos, J. R. Sambrano, and F. Illas, J. Phys. Chem. C 118, 9677 (2014)
42. P. Kubelka, and F. Munk, Z. Tech. Phys. (Leipzig) 12, 593–601 (1931).
43. J. Tauc, and A. Menth, J. Non-Cryst. Solids 8, 569-585 (1972).
44. O. Bunău, and Y. Joly, J. Phys.: Condens. Matter 21, 345501 (2009).
45. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
46. C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Phys. Rev. B 75, 035115 (2007).