簡易檢索 / 詳目顯示

研究生: 畢少強
Sajal Biring
論文名稱: 以電化學方法製備之金屬奈米結構及其電漿子耦合之研究
Study on Fabrication of Metal Nanostructures by Electrochemical Methods &Their Plasmonic Coupling
指導教授: 王玉麟
Prof. Yuh-Lin Wang
王俊凱
Prof. Juen-Kai Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 109
中文關鍵詞: 奈米結構電漿子電化學
外文關鍵詞: Nanostructure, Plasmonic, Electrochemical, Anodic aluminum oxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以電化學方法製備之金屬奈米結構及其電漿子耦合之研究


    A rapid electrochemical replication technique is developed to fabricate ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafer as the master. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pre-treatment.
    An electrochemical nanomolding technique for the large-scale and rapid fabrication of metallic nanostructures has been demonstrated taking advantage of the above method. Here, Nanostructures with features down to 10 nm has been fabricated by fast electrochemical deposition of aluminum on nanopatterned silicon mold followed by mechanical peeling off the aluminum foil from the mold. This high fidelity, non-destructive technique can exploit the mold for repeated use in mass production of nanostructures and also opens up new possibilities in the field of nano-scale design and fabrication.
    Finally, a large-scale guiding technique has been presented to fabricate long-range order anodic alumina nanochannel arrays based on electrochemical nanomolding. Optical properties of metal nanostructures grown inside the anodic alumina nanochannels have been studied thoroughly.
    Electromagnetic interactions of the near-, intermediate- and far-zone in an array of metallic nanoparticles are responsible for many of its anomalous plasmonic properties. While this so-called plasmonic coupling has become a focus of many researches lately, its interaction mechanisms still remain concealed, mainly due to the lack of spectroscopic observations from precisely fabricated samples as well as analytical interpretations. Here, I present light scattering spectra of arrays of silver nanoparticles with gaps of sub-10 nm precision, which are fabricated based on the unique self-organizing property of porous alumina templates. I show that their near- and immediate-zone interactions are manifested in the spectra through analytical formulae derived from first principle. The findings provide a profound base to predict unexplored plasmonic properties such as the relationship between the Q factor of the arrays and their structural characteristics. The results are instrumental in the development of extended plasmonic nanostructures, such as surface-enhanced Raman substrates.
    In a very lucid way, I have also studied the particle plasmon resonace behavior using light scattering spectroscopy in a binary dielectric media where silver nano-rods are embedded partially in Anodic Aluminum Oxide (AAO) matrix and in air. Here I did a systematic experimental study under a controlled variation of the degree of embedding of nano-rods in AAO matrix. I used Finite Difference Time Domain (FDTD) method to calculate the nature of the silver nano-rod resonance at the experimental conditions. The results have been interpreted based on the Drude model.

    Chapter 1 Introduction 1 References 6 Chapter 2 Experimental studies 12 2.1 Fabrication of nanostructures 12 2.1.1 Preparation of Anodic Aluminum Oxide template for nanostructure fabrication 13 2.1.2 Fabrication of nanometric smooth aluminum surface by electrochemical replication 22 2.1.3 Nanopatterning on aluminum surfaces by electrochemical nanomolding 29 2.1.4 Guiding of anodic alumina nanochannels on prepatterned aluminum foils fabricated by electrochemical nanomolding 35 2.2 Optical studies 39 2.2.1 Gap dependant scattering spectra 42 2.2.2 Medium effect on scattering spectra 44 References 46 Chapter 3 Theoretical studies 49 3.1 Surface plasmons 49 3.2 Particle plasmons 56 3.3 Coupling of particle plasmons 63 3.4 Medium effect in scattering 66 References 69 Chapter 4 Results and Discussions 71 4.1 Plasmonic coupling 71 4.2 Medium effect in particle plasmon scattering 84 4.3 Fabrication of smooth and nanopatterned Al surfaces 85 4.4 Guiding of anodic aluminum oxide 89 References 89 Chapter 5 Conclusions 92 Appendix 95

    1. http://www.thebritishmuseum.ac.uk
    2. Faraday, M. On the color of colloidal gold. Philos. Trans. Royal Soc. London 147,145-181 (1857).
    3. Kelly, K. L.; Coronado, E.; Zhao, L. L. & Schatz, G. C. J. Phys. Chem. B. 107, 668-, (2003).
    4. Mie, G. Beitrage zur optik truber medien speziel kolloidaler metallosungen. Ann. Phys. 25, 377-445 (1908).
    5. Geissler, M. & Xia, Y. Patterning: Principles and some new developments. Adv. Mater. 16, 1249-1269 (2004).
    6. Barnes, W. L.; Dereux A. & Ebbesen T. W. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003).
    7. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
    8. Moskovits, M. Surface enhanced spectroscopy. Rev. Mod. Phys. 57, 783-826 (1985).
    9. Hulteen, J. C. & Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
    10. Wang, H. H. et al. Highly Raman Enhancing-Substrates Based on Silver nanoparticle Arrays with Tunable Sub-10 nm Gaps. Adv. Mater. 18, 491-495 (2006).
    11. Nie, S. & Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275, 1102-1106 (1997).
    12. Su, K. H. et al. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett. 3, 1087-1090 (2003).
    13. Gunnarsson, L. et al. Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions. J. Phys. Chem. B 109, 1079-1087 (2005).
    14. Jain, P. K.; Huang, W. & El-Sayed, M. A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 8, (2007).
    15. Haynes, C. L. et al. Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays. J. Phys. Chem. B 107, 7337-7342 (2003).
    16. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137-141 (2003).
    17. Kotmann, J. P. & Martin, O. J. F. Plasmon resonant coupling in metallic nanowires. Opt. Exp. 8, 655-663 (2001).
    18. Xiang, X. D. et al. A Combinatorial Approach to Materials Discovery. Science 268, 1738-1740 (1995).
    19. Persson, B. N. J. & Liebsch, A. Optical properties of two-dimensional systems of randomly distributed particles. Phys. Rev. B 28, 4247-4254 (1983).
    20. Markel, V. A. Coupled Dipole Approach to Scattering of Light from a One-Diemnsional Periodic Dipole Structure. J. Mod. Opt. 40, 2281- 2291 (1993).
    21. Drezet, A.; Stepanov, A. L.; Ditlbacher, H.; Hohenau, A.; Steinberger, B.; Aussenegg, F. R.; Leitner, A. & Krenn, J. R. Appl. Phys. Lett. 86, 074104 (2005).
    22. Hirai, H.; Wakabayashi, H. & Komyama, M. Chem. Lett. 12, 1047-, (1983).
    23. Brugger, A.; Cuendet, P. & Gratzel, M. J. Am. Chem. Soc. 103, 2923-, (1981).
    24. Schon, G. & Simon, U. Coll. Polym. Sci. 273, 202-, (1995).
    25. Ocelic, N. & Hillenbrand, R. Nat. Mater. 3, 606-, (2004).
    26. Cao, Y. W. C.; Jin, R. C. & Mirkin, C. A. Science, 297, 1536-, (2002).
    27. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M. & Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770-2772 (1997).
    28. Liu, C. Y.; Datta, A. & Wang, Y. L. Ordered anodic aumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 78, 120-122 (2001).
    29. Anderson, E.H.; Ha, D.; Liddle, J.A. Sub-pixel alignment for direct-write electron beam lithography. Microelectronic Engineering 73-74, 74-79 (2004).
    30. Tseng, A.A. Recent development in micromilling using focused ion beam technology. J.Micromech. Microeng. 2004, 14, R15-R34.
    31. Xia, Y.& Whitesides, G. M. Soft Lithography. G.M. Angew. Chem. Int. Ed. Engl. 37, 550-575 (1998).
    32. Chou, S.Y.; Krauss & P.R.; Renstrom, P.J. Imprint Lithography with 25-Nanometer Resolution. Science 272, 85-87 (1996).
    33. Schubert, U.S.; Wouters, D. Nanolithography and Nanochemistry: Probe-related Patterning Techniques and Chemical Modification for Nanometer-sized Devices. Angew. Chem. Int. Ed. Engl. 43, 2480-2495 (2004).
    34. Attard,G.S.;Bartlett,N.;Coleman, N.R.B.; Elliott, J.M.; Owen, J.R.; Wang, J.H. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838-840 (1997).
    35. Li, J.; Papadopoulos, C.; Xu, J. M. & Moskovits, M. Highly-ordered carbon nanotube arrays. Appl. Phys. Lett., 75, 367-369 (1999).
    36. Zhan, Q.; Chen, Z.; Xue, D.; Li, F.; Kunkel, H.; Zhou, X.; Roshko, R. & Williams, G. Structure and magnetic properties of Fe-Co nanowires in self-assembled arrays. Phys. Rev. B 66, 134436 (2002).
    37. Melle,S. ; Menendez, J. L. ; Armelles, G. ; Navas, D. ; Vazquez, M. ; Nielsch, K. ; Wehrspohn, R. B. & Gosele, U. Magneto-optical properties of nickel nanowire arrays. Appl. Phys. Lett. 83, 4547-4549 (2003).
    38. Masuda, H.; Hasegwa, F. & Ono, S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127-L130 (1997).
    39. Li, A. P.; Muller, F.; Birner, A. & Gosele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023-6026 (1998).
    40. Asoh, H.; Nishio, K.; Nakao, M. & Yokoo, A.; Tamamura, T. & Masuda, H. Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac. Sci. Technol. B 19, 569 (2001).
    41. Sun, Z. & Kim, H. K. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl. Phys. Lett. 81,3458-3460, (2002).
    42. Liu, N. W.; Datta, A.; Liu, C. Y. & Wang, Y. L. High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays. Appl. Phys. Lett. 82, 1281-1283 (2003).
    43. Yasui, K.; Nishio, K.; Nunokawa, H. & Masuda, H. Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds J. Vac. Sci. Technol. B 23, L9 (2005).
    44. Lee, W.; Ji, R.; Ross, C.A.; Gosele, U. & Nielsch, K. Wafer-scale nickel imprint stamps for porous alumina membranes based on interference lithography. Small 2, 978-982 (2006).
    1. Wang, H. H. et al. Highly Raman Enhancing-Substrates Based on Silver nanoparticle Arrays with Tunable Sub-10 nm Gaps. Adv. Mater. 18, 491-495 (2006).
    2. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466-1468 (1995).
    3. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M. & Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770-2772 (1997).
    4. Li, A. P.; Muller, F.; Birner, A., & Gosele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023-6027 (1998).
    5. Masuda, H. & Satoh, M. Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. Jpn. J. Appl. Phys. 35, L126-l129 (1996).
    6. Liu, C. Y.; Datta, A. & Wang, Y. L. Ordered anodic aumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 78, 120-122 (2001).
    7. Kranenburg, H. V. & Woerlee, P. H. Influence of Overpolish Time on the Performance of W Damascene Technology. J. Electrochem. Soc. 145, 1285-1291 (1998).
    8. Hegner, M.; Wagner, P. & Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy, Surf. Sci. 291, 39-46 (1993).
    9. Stamou, D.; Gourdon, D.; Liley, M.; Burnham, N. A.; Kulik, A.; Vogel, H. & Duschl, C. Uniformly Flat Gold Surfaces: Imaging the Domain Structure of Organic Monolayers Using Scanning Force Microscopy. Langmuir 13, 2425-2428 (1997).
    10. Samori, P.; Diebel, J.; Lowe, H. & Rabe, J. P. Template stripped gold supported on Ni as a substrate for SAMs. Langmuir 15, 2592-2594 (1999).
    11. Van de Berg, J. F. M.; Van Dijk, G. A. R. & Van de Leest, R. E. Room Temperature Electroplating of Aluminum. Metal finishing 83, 15-18 (1985).
    12. Harding, W. B. Modern Electroplating, edited by F. A. Lowenheim (New York: John Wiley & Sons 1974), P 63.
    13. Zhao, Y. & VanderNoot, T. J. Electrodeposition of aluminum from non-aqueous organic electrolytic systems and room temperature molten salts. Electrochim. Acta 42, 3-13 (1997).
    14. Frazier, A. B. & Allen, M. G. Uses of electroplated auluminum for the development of microstructures and micromachining processes. J. Microelectromech. Sys. 6, 91-98 (1997).
    15. Lefebvre, M. C. & Conway, B. E. Elementary steps and mechanism of electrodeposition of Al from complex hydride ions in tetrahydrofuran baths. J. Electroanal. Chem. 480, 46-58 (2000).
    16. Hosoda, N.; Kyogoku, Y. & Suga, T. Effect of the surface treatment on the room-temperature bonding of A to Si and SiO2. J. Mater. Sci. 33, 253-258 (1998).
    17. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337, 519-525 (1989).
    18. Masuda, H.; Hasegwa, F. & Ono, S. Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution. J. Electrochem. Soc. 144, L127-L130 (1997).
    19. Biring, S.; Tsai, K. T.; Sur, U. K. & Wang, Y. L. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays. Nanotechnology.19,015304,2008
    20. Biring, S.; Tsai, K. T.; Sur, U. K. & Wang, Y. L. Naopatterning on aluminum surfaces at 10 nm resolution by high speed electrochemical nanomolding. Manuscript under preparation.
    1. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
    2. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles, (Willey, New York, 1983).
    3. Nie, S. & Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275, 1102-1106 (1997).
    4. Halte, V.; Bigot, J.-Y.; Palpant, B.; Broyer, M.; Prevel, B. & Perez A. Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Appl. Phys. Lett. 75, 3799-3801 (1999).
    5. Voisin, C. ; Fatti, N. D.; Christofilos, D. & Vallee, F. Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles. J. Phys. Chem. B 105, 2264-2280 (2001)
    6. Jackson, J. D. Classical Electrodynamics, (Wiley, New York, 1999).
    7. Persson, B. N. J. & Liebsch, A. Optical properties of two-dimensional systems of randomly distributed particles. Phys. Rev. B 28, 4247-4254 (1983).
    8. Kelly, K. L.; Coronado, E.; Zhao, L. L. & Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668-677 (2003).
    9. Xia, Y. and Halas, N. J. Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures. MRS Bulletin, 30, 338-348 (2005).
    10. Hayes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P. & Zou, S. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin, 30, 368-375 (2005).
    11. Malinsky, M. D.; Kelly, K. L.; Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: Effect of the substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B, 105, 2343-2350 (2001).
    1. Wang, H. H. et al. Highly Raman Enhancing-Substrates Based on Silver nanoparticle Arrays with Tunable Sub-10 nm Gaps. Adv. Mater. 18, 491-495 (2006).
    2. Su, K. H. et al. Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett. 3, 1087-1090 (2003).
    3. Gunnarsson, L. et al. Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions. J. Phys. Chem. B 109, 1079-1087 (2005).
    4. Jain, P. K.; Huang, W. & El-Sayed, M. A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 8, (2007).
    5. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137-141 (2003).
    6. Persson, B. N. J. & Liebsch, A. Optical properties of two-dimensional systems of randomly distributed particles. Phys. Rev. B 28, 4247-4254 (1983).
    7. Jackson, J. D. Classical Electrodynamics, (Wiley, New York, 1999).
    8. Markel, V. A. Coupled Dipole Approach to Scattering of Light from a One-Diemnsional Periodic Dipole Structure. J. Mod. Opt. 40, 2281- 2291 (1993).
    9. Liu, Y.; Lin, J.; Huang, G.; Guo, Y. & Duan, C. Simple empirical analytical approximation to the Voigt profile. J. Opt. Soc. Am. B 18, 666-672 (2001).
    10. Palik, E. D. Handbook of Optical Constants of Solids, (Academic Press, London, 1985).
    11. Thompson, D. W.; Snyder, P. G.; Castro L. & Yan, L. Optical characterization of porous alumina from vacuum ultraviolet to midinfrared. J. Appl. Phys. 97, 113511, (2005).
    12. Olivero, J. J. & Longbothum, R. L. Empirical fits to the Voigt linewidth: A brief review. J. Quant. Spectrosc. Radiat. Transf. 17, 233-236 (1977).
    13. Draine, B. T. The Discrete-Dipole Approxiamtion and its Application to Interstellar graphite Grains. Astrophys. J. 333, 848-872 (1988).
    14. Collinge, M. J. & Draine, B. T. Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J. Opt. Soc. Am. A 21, 2023-2028 (2004).
    15. Zou, S. & Schatz, G. C. Response to “Comment on ‘Silver nanoparticle array atructures that produce remarkable narrow plasmon line shapes’” J. Chem. Phys. 102, 122 (2005).
    16. Khlebtsov. B.; Melnikov. A.; Zharov, B. & Khlebtsov, N. Absorption and scattering of light by a dimmer of metal nanospheres: Comparison of dipole and multipole approaches. Nanotech. 17, 1437-1445 (2006).
    17. Lin, K. L.; Chen, S. K. & Chang, S. Y. Adhesion of multilayer solder pads on silicon. J. Mater. Sci. Mater. Elec. 8, 253-257 (1997).
    18. Graf, D.; Grundner, M. & Schulz, R. Reaction of water with hydrofluoric acid treated silicon (111) and (100) surfaces. J. Vac. Sci. Technol. A 7, 808-813 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE