簡易檢索 / 詳目顯示

研究生: 羅敬霖
Luo, Jing-Lin
論文名稱: 介白素8及其類似物與G蛋白偶聯受體CXCR1/CXCR2結合活性試驗的開發
Binding activity assay development of IL-8 and its analogue with G-protein coupled receptor CXCR1/CXCR2
指導教授: 程家維
Cheng, Jya-Wei
口試委員: 陳金榜
Chen, Chin-Pan
龍鳳娣
Lung, Feng-Di
王翊青
Wang, I-Ching
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 50
中文關鍵詞: 介白素8ELR-CXC趨化素IL-8類似物發炎抗發炎藥物受體CXCR1受體CXCR2ELISA親和力實驗
外文關鍵詞: interleukin 8, ELR-CXC chemokine, IL-8 analogue, inflammatory, anti-inflammatory drug, CXCR1 receptor, CXCR2 receptor, ELISA binding assay
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嗜中性白血球在宿主的免疫防禦機制上扮演重要的角色。然而,過度的嗜中性白血球浸潤會使得組織受損進而導致發炎性疾病的產生。介白素8,IL-8是一種ELR-CXC趨化素,藉由與細胞表現上特定的穿膜受體CXCR1以及CXCR2結合,進而介導白血球的趨化以及活化。在先前的研究中,透過對IL-8結構特性分析設計出IL-8類似物,稱為RP4,能夠與IL-8共同競爭其受體CXCR1/2有效抑制IL-8與CXCR1/2結合後所導致下游一系列的訊號傳遞。
    為了想要獲得足夠的CXCR1/2用於功能與結構研究上,我們初步的建立出一個以大腸桿菌生產重組膜蛋白,CXCR1以及CXCR2的純化方法。再將所生產的CXCR1/2與另外表現出來的IL-8以及RP4利用一個能夠快速檢測的分析方式,進一步的確認IL-8以及RP4的功效。ELISA親和力實驗指出RP4比起IL-8能夠以更高的親和力與CXCR1/2結合。
    IL-8已被證實與數種癌症以及炎症有關,而總結本實驗結果與先前研究能夠清楚的呈現我們成功以大腸桿菌表現並純化CXCR1以及CXCR2,並且將純化到的CXCR1及CXCR2應用在ELISA結合力分析上。


    Neutrophils play an important role in human host immune defense mechanisms. However, excessive neutrophil infiltration can cause tissue damage and lead to inflammatory diseases. Interleukin 8, IL-8, one of ELR CXC chemokine, mediates the chemotaxis and activation of neutrophils through binding to the two transmembrane G protein-coupled receptors, CXCR1 and CXCR2. In previous studies, we designed an IL-8 analogue, RP4, which competed with IL-8 for its receptors, CXCR1 and CXCR2, and blocked a series of downstream signal pathway induced by IL-8.
    We establish the purification methods of recombinant membrane proteins, CXCR1 and CXCR2 by E. coli expression system in our lab. Then, the purified CXCR1, CXCR2, IL-8 and RP4 were further confirmed for the efficacy of IL-8 and RP4 by a rapidly detected assay. ELISA binding experiments indicated that RP4 bound to CXCR1 and CXCR2 with higher affinity than IL-8.
    It has shown IL-8 is related to several cancers and inflammatory diseases. From our results and previous studies showed that we have successfully expressed and purified CXCR1 and CXCR2 in E. coli and the expressed CXCR1 and CXCR2 could be used for ELISA binding assay.

    Abstract 3 Table of content 5 Chapter 1 Introduction 6 1.1 Chemokines 6 1.2 The role of interleukin-8 (IL-8/CXCL8) 7 1.3 Design of the analogues of interleukin-8 9 1.4 G protein-coupled receptors 10 1.5 Receptors of CXC Chemokine, CXCR1 and CXCR2 11 Chapter 2 Material and Methods 13 2.1 Chemical and Reagents 13 2.2 Expression and purification of recombinant IL-8 and RP4 13 2.3 Construct and transform the vector of CXCR1 and CXCR2 14 2.4 Expression and purification of recombinant CXCR1 and CXCR2 15 2.5 Determination of CXCR1 and CXCR2 by Western blotting 17 2.6 Determination of dissociation constants by ELISA 18 Chapter 3 Results 21 3.1 Expression and purification of IL-8 and RP4 21 3.2 Construction of recombinant expressed plasmid 21 3.3 Expression and purification of recombinant protein 22 3.4 The binding affinity of RP4 are stronger than IL-8 to both CXCR1 and CXCR2 22 Chapter 4 Conclusion and Discussion 24 Abbreviation Index 46 References 47

    1. Groves, D., Y.J.C.R.i.O.B. Jiang, and Medicine, Chemokines, a family of chemotactic cytokines. 1995. 6(2): p. 109-118.
    2. Mantovani, A., R. Bonecchi, and M.J.N.R.I. Locati, Tuning inflammation and immunity by chemokine sequestration: decoys and more. 2006. 6(12): p. 907.
    3. Lee, H.J., et al., CXC chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. 2014. 20(7): p. 1681.
    4. Zlotnik, A. and O.J.I. Yoshie, Chemokines: a new classification system and their role in immunity. 2000. 12(2): p. 121-127.
    5. Strieter, R.M., et al., The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. 1995. 270(45): p. 27348-27357.
    6. Clark-Lewis, I., et al., Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. 1991. 266(34): p. 23128-23134.
    7. Raman, D., et al., Role of chemokines in tumor growth. 2007. 256(2): p. 137-165.
    8. Liu, Y.-N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. 2015. 6(12): p. 10415.
    9. Li, T., et al., Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non–small cell lung cancer cells. 2007. 13(11): p. 3413-3422.
    10. Baggiolini, M., B. Dewald, and B.J.A.r.o.i. Moser, Human chemokines: an update. 1997. 15(1): p. 675-705.
    11. Singh, S., et al., Chemokines in tumor angiogenesis and metastasis. 2007. 26(3-4): p. 453-467.
    12. Belperio, J.A., et al., CXC chemokines in angiogenesis. 2000. 68(1): p. 1-8.
    13. Rajarathnam, K., et al., Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: dissociation of roles in structure from function. 1999. 38(24): p. 7653-7658.
    14. Clore, G.M., et al., Three-dimensional structure of interleukin 8 in solution. 1990. 29(7): p. 1689-1696.
    15. Moore, B.B., et al., CXC chemokines mechanism of action in regulating tumor angiogenesis. 1998. 2(2): p. 123-134.
    16. Quan, J., et al., Antibodies against the N-terminus of IL-8 receptor A inhibit neutrophil chemotaxis. 1996. 219(2): p. 405-411.
    17. Woods, J.M., et al., Reduction of inflammatory cytokines and prostaglandin E2 by IL-13 gene therapy in rheumatoid arthritis synovium. 2000. 165(5): p. 2755-2763.
    18. Beeh, K.M., et al., Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. 2003. 123(4): p. 1240-1247.
    19. Kurdowska, A., et al., Anti-interleukin-8 autoantibodies in patients at risk for acute respiratory distress syndrome. 2002. 30(10): p. 2335-2337.
    20. Harada, A., et al., Essential involvement of interleukin‐8 (IL‐8) in acute inflammation. 1994. 56(5): p. 559-564.
    21. Clark-Lewis, I., et al., Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. 1994. 269(23): p. 16075-16081.
    22. Xanthou, G., T.J. Williams, and J.E.J.E.j.o.i. Pease, Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi‐step model of ligand binding and receptor activation. 2003. 33(10): p. 2927-2936.
    23. Skelton, N.J., et al., Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. 1999. 7(2): p. 157-168.
    24. Uribe-Querol, E. and C.J.J.o.i.r. Rosales, Neutrophils in cancer: two sides of the same coin. 2015. 2015.
    25. Liu, Q., et al., The CXCL8-CXCR1/2 pathways in cancer. 2016. 31: p. 61-71.
    26. Moser, B., et al., Interleukin-8 antagonists generated by N-terminal modification. 1993. 268(10): p. 7125-7128.
    27. Li, F., J.R.J.B. Gordon, and b.r. communications, IL-8 (3–73) K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. 2001. 286(3): p. 595-600.
    28. Schneberger, D., et al., CXCR1/CXCR2 antagonist CXCL8 (3-74) K11R/G31P blocks lung inflammation in swine barn dust-instilled mice. 2015. 31: p. 55-62.
    29. Li, F., et al., CXCL8 (3–73) K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. 2002. 293(3): p. 939-944.
    30. Proudfoot, A.E.J.N.R.I., Chemokine receptors: multifaceted therapeutic targets. 2002. 2(2): p. 106.
    31. Power, C.A. and T.N.J.T.i.p.s. Wells, Cloning and characterization of human chemokine receptors. 1996. 17(6): p. 209-213.
    32. Hilger, D., et al., Structure and dynamics of GPCR signaling complexes. 2018. 25(1): p. 4.
    33. Schöneberg, T., et al., Mutant G-protein-coupled receptors as a cause of human diseases. 2004. 104(3): p. 173-206.
    34. Brat, D.J.T.r.o.i.-., i.r.i. gliomagenesis, and t.a. Neuro-oncol, Bellail AC, and Van Meir EG. 2005. 7: p. 122-133.
    35. Bizzarri, C., et al., ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. 2006. 112(1): p. 139-149.
    36. Wolf, M., et al., Granulocyte chemotactic protein 2 acts via both IL‐8 receptors, CXCR1 and CXCR2. 1998. 28(1): p. 164-170.
    37. Catusse, J., et al., Characterization of the molecular interactions of interleukin-8 (CXCL8), growth related oncogen α (CXCL1) and a non-peptide antagonist (SB 225002) with the human CXCR2. 2003. 65(5): p. 813-821.
    38. Lee, J., et al., Characterization of two high affinity human interleukin-8 receptors. 1992. 267(23): p. 16283-16287.
    39. Brat, D.J., A.C. Bellail, and E.G.J.N.-o. Van Meir, The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. 2005. 7(2): p. 122-133.
    40. Nasser, M.W., et al., Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. 2009. 183(5): p. 3425-3432.
    41. Walz, A., et al., [Ca2+] i changes and respiratory burst in human neutrophils and monocytes induced by NAP‐1/interleukin‐8, NAP‐2, and gro/MGSA. 1991. 50(3): p. 279-286.
    42. Schägger, H.J.N.p., Tricine–sds-page. 2006. 1(1): p. 16.
    43. Casagrande, F., et al., Expression and Purification of G‐Protein‐Coupled Receptors for Nuclear Magnetic Resonance Structural Studies. 2011: p. 297-316.
    44. Park, S.H., et al., Structure of the chemokine receptor CXCR1 in phospholipid bilayers. 2012. 491(7426): p. 779.
    45. Pollard, T.D.J.M.b.o.t.c., A guide to simple and informative binding assays. 2010. 21(23): p. 4061-4067.
    46. Eble, J.A.J.J., Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction. 2018(132): p. e57334.
    47. Orosz, F. and J.J.J.o.i.m. Ovádi, A simple method for the determination of dissociation constants by displacement ELISA. 2002. 270(2): p. 155-162.
    48. Liliom, K., et al., Quantitative evaluation of indirect ELISA effect of calmodulin antagonists on antibody binding to calmodulin. 1991. 143(1): p. 119-125.
    49. Rajagopalan, L. and K.J.J.o.B.C. Rajarathnam, Ligand selectivity and affinity of chemokine receptor CXCR1 Role of N-terminal domain. 2004. 279(29): p. 30000-30008.
    50. Kendrick, A.A., et al., The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Protein Sci, 2014. 23(4): p. 464-80.
    51. Wang, L. and L.J.S.C.L.s. Tonggu, Membrane protein reconstitution for functional and structural studies. 2015. 58(1): p. 66-74.
    52. Shen, H.-H., T. Lithgow, and L.J.I.j.o.m.s. Martin, Reconstitution of membrane proteins into model membranes: seeking better ways to retain protein activities. 2013. 14(1): p. 1589-1607.
    53. Joseph, P.R.B., et al., Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. 2010. 285(38): p. 29262-29269.
    54. Henson, P.M. and R.W.J.N.m. Vandivier, The matrix degrades, neutrophils invade. 2006. 12(3): p. 280.
    55. Waugh, D.J. and C.J.C.c.r. Wilson, The interleukin-8 pathway in cancer. 2008. 14(21): p. 6735-6741.
    56. Nicholls, D.J., et al., Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. 2008. 74(5): p. 1193-1202.

    QR CODE