簡易檢索 / 詳目顯示

研究生: 王蔚鈞
論文名稱: 三維原子結構回復之研究:利用逆多層法及逆通道理論
The Study of Structure Reversion Toward Atomic Resolution Tomogaphy Using Reverse Multislice Theory and Reverse Channelling Theory
指導教授: 開執中
Ji Jung Kai
陳福榮
Fu Rong Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 85
中文關鍵詞: 結構回復多層法通道理論三維結構重構
外文關鍵詞: structure reversion, multislice theory, channelling theory, tomography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微觀定出奈米晶體的結構可以促使了解其性質並被廣泛地運用。很多研究已顯示利用高分辨電子顯微鏡可以達到細微尺度的訊息。然而仍未有發表重構三維結構達原子分辨率級的研究。
    電子與原子的作用力很強,經過晶體內可同時產生數百束的繞射線而有相當程度的多次干射現象,使得在出口平面的波函數不能直接對應出結構的訊息。動力散射(dynamical scattering)的現象可由多層法(multislice theory)以及通道理論(channelling theory)來解釋。多層法主要是從光學物理的角度將電子通過樣品看作穿透一疊N個等距二維的相位及振幅物體。通道理論則是在實空間計算電子穿過原子通道的運動模式,而此模式可用其最低能量狀態亦即最受束縛的狀態來表示。本論文主要在探討由出口波利用逆多層法以及逆通道理論回復結構的可行性以及正確性。逆多層法是要定出電子束穿過晶體的原子層數。逆通道理論則是回復原子通道的厚度以及其最低狀態的能量。這兩種方法最主要目的皆是在於定性定量的決定原子通道中的原子顆數及種類。兩種方法皆測試在一模擬的鎳化矽(NiSi2)楔型結構與一實驗的鈦酸鍶(SrTiO3)在[110]方向的出口波。初步的研究結果顯示這兩種方法皆能有效的定出原子顆數及種類。
    本論文最後介紹利用離散概念重構三維結構達原子分辨率級。材料在原子分辨率級可視為離散的原子分佈。將投影的結構訊息用矩陣描述則可以數學方法回復矩陣以達到重建三維原子分辨率的結構。


    Finding the structure of nanocrystals to atomic scale can provide a greater understanding of the properties of nano-materials which may realize in many different applications. It has been widely studied that high resolution transmission electron microscope (HRTEM) can provide the information to a finer scale. However, atomic resolution tomography has not yet proposed.
    Electrons interact with atoms strongly which cause hundreds of diffractions simultaneously resulting in multiple scattering. Therefore, the exit wave function does not reveal the structure information exactly. Dynamical scattering in the crystal can be described from the multislice theory and the channelling theory. The multislice theory presents the electrons are transmitted through a set of N two dimensional phase- and amplitude-objects in equal separation distances. The channelling theory derives the motion of electrons passing through an atom column in real space. This motion can be fairly expressed only by the most bound state of the electrons. This thesis discusses the potential of structure reversion from exit wave based on the two methods: reverse multislice method and reverse channelling method. From the reverse multislice method, it is intended to find the number of slices of atomic planes perpendicular to the incident electron beam direction. The reverse channelling method is mainly retrieving the thickness and the bound eigenenergy of the atom column. These two methods apply to analyze the number of atoms in every atom column and to distinguish chemically the different elements. Both methods are tested with a simulated wedge-shaped crystal NiSi2 and an experimental SrTiO3 [110] exit wave. The results show that these two methods can effectively determine the number and the type of the atoms.
    A primary concept of discrete tomography is introduced. At the atomic level materials are made out of a discrete set of atoms. By representing the structure projection information as matrices, atomic resolution tomography can be obtained.

    Abstract (English) Abstract (Chinese) Acknowledgements List of Figures ………………………………………………..…… iii List of Tables ……………………………………………………… v Chapter 1. Introduction …………………………………………... 1 1.1 Introduction ………………………..……………………... 1 1.2 Importance of structure reversion ……………………... 1 1.3 High resolution transmission electron microscopy … 3 1.4 History of structure reversion …...………………………. 4 1.5 The motivation and purpose of this research work … 10 Chapter 2. Theory of structure reversion ...……....…………….. 12 2.1 Introduction ……………………………………………. 12 2.2 Multislice method ………...…………………….……… 13 2.2.1 Reverse multislice method …………..…….……... 15 2.3 Channelling theory ……………………………………… 17 2.3.1 Real-space exit wave reconstruction based on the channelling theory ….…………………………… 19 2.3.2 Structure reversion based on the channelling theory ………………………………...……...…... 24 2.4 Tomography from projected potentials ………………..... 27 2.5 Conclusion …………………………………………….…... 29 Chapter 3. Results and Discussions …………………………… 39 3.1 Introduction ………………..………….…………………. 39 3.2 Structure reversion based on the multislice method .….. 39 3.2.1 Structure reversion of a wedge-shaped NiSi2 .....… 41 3.2.2 Structure reversion of an experimental SrTiO3 [110] exit wave ………...……………….……………..…. 42 3.3 Structure reversion based on the channelling theory …. 43 3.3.1 Structure reversion of a wedge-shaped NiSi2 .…… 44 3.3.2 Structure reversion of an experimental SrTiO3 [110] exit wave ………...……………….……………..…. 46 3.4 Atomic resolution tomography ……..…………………… 47 3.5 Conclusions ….....………………………………………… 48 Chapter 4. General Conclusions …………….……………...…… 79 Chapter 5. Future Study and Suggestions ……………………… 81 Reference ………………………..……………………………… 82

    [1] J. Wang and P. J. Dortmans, A Review of Selected Nanotechnology Topics and Their Potential Military Applications, DSTO System Science Laboratory (2004)
    [2] K. C. Chen et al., Electrochimica Acta 52 (2007) 3330
    [3] Physics News Update July (2005) No. 737 #1
    [4] J. Shama and Y. Zhang et al., International Journal of Pharmaceutics 269 (2004) 457
    [5] Physics News Update March (2004) No. 678 #1
    [6] C. E. Nebel, Nature Materials 2 (2003) 431
    [7] S. Talaptra, P. G. Ganesan, T. Kim et al., Phys. Rev. Lett. 95 (2005) 097201
    [8] R. W. Rice, Journal of Materials Science 28 (1993) 2187
    [9] A. Kaniava, A. L. P. Rotondaro et al., Appl. Phys. Lett, 67(26) (1995) 3930
    [10] R. E. ReedHill and R. Abbaschian, Physical Metallurgy Principles 3rd edition, PWS Publishing Company (1994)
    [11] J. Frank, Electron Tomography: Three-dimensional imaging with the transmission electron microscope, Plenum Press New York, 1992
    [12] H. Rose, Optik 85(1) (1990) 19
    [13] G. C. Yin, Y. F. Song, M. T. Tang et al., Appl. Phys. Lett. 89 (2006) 221122
    [14] R. Henderson, Quarterly Review of Biophysics 28(2) (1995) 171
    [15] J. Spence, Materials Today March (2002) 20
    [16] D. J. Smith, Rep. Prog. Phys. 60 (1997) 1513, Section 5.4
    [17] A. Bourret, J. L. Rouviere and J. M. Penisson, Acta Cryst. A 44 (1988) 838
    [18] D. Gabor, Nature (London) 161 (1948) 777
    [19] J. A. Lin and J. M. Cowley, Ultramicroscopy 19 (1986) 179
    [20] A. V. Crewe, D. N. Eggenberger, J. Wall, and L. M. Welter, Rev. Sci. Instrum. 39 (1968) 576
    [21] H. Lichte, Ultramicroscopy 47 (1992) 223
    [22] D. Van Dyck, H. Lichte and J. C. H. Spence, Ultramicroscopy 81 (1999) 187
    [23] P. Schiske, Image Processing and Computer Aided Design in Electron Optics, Academic Press New York, 1973
    [24] D. Van Dyck, M. Op de Beeck and W. Coene, Optik 93:3 (1993) 103
    [25] E. J. Kirkland, Ultramicroscopy 15 (1984) 151
    [26] A. Thust, M. Lentzen and K. Urban, Ultramicroscopy 53 (1994) 101
    [27] Y. Takai, Y. Kimura, T. Ikuta et al., Journal of Electron Microscopy 48(6) (1999) 879
    [28] A. I. Kirkland, W. O. Saxton et al., Ultramicroscopy 57 (1995) 355
    [29] W. K. Hsieh, F. R. Chen, J. J. Kai and A. I. Kirkland, Ultramicroscopy 98 (2004) 99
    [30] O. Scherzer, Optik 2 (1947) 114
    [31] H. Rose, Optik 85 (1990) 19
    [32] A. V. Crewe, Optik 89 (1991) 70
    [33] R. Seeliger, Optik 8 (1951) 311
    [34] M. Haider, H. Rose et al., Ultramicroscopy 75 (1998) 53
    [35] O. L. Krivanek, P. D. Nellist et al., Ultramicroscopy 96 (2003) 229
    [36] J. R. Jinschek, C. Kisielowski et al., Mater. Res. Soc. Symp. Proc. 727 (2002) 3
    [37] K. Tillmann, A. Thust and K. Urben, Microscopy and Microanalysis 10 (2004) 185
    [38] J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne et al., Microscopy and Microanalysis 10 : S2 (2004) 8
    [39] J. M. Cowley and A. F. Moodie, Acta Cryst. 10 (1957) 609
    [40] L. Sturkey, Proc. Phys. Soc. 80 (1962) 321
    [41] M. A. Gribelyuk, Acta Cryst. A47 (1991) 715
    [42] M. J. Beeching and A. E. C. Spargo, Ultramicroscopy 52 (1993) 243
    [43] F. R. Chen, C. Kisielowski et al., submitted to Ultramicroscopy
    [44] D. Van Dyck and M. Op de Beeck, Ultramicroscopy 64 (1996) 99
    [45] W. Sinkler and L. D. Marks, Journal of Micrscopy 194 (1999) 112
    [46] P. Geuens and D. Van Dyck, Ultramicroscopy 93 (2002) 179
    [47] D. DeRosier and A. Klug, Nature (London) 217 (1968) 130
    [48] R. Feynman, in Caltech’s Engineering and Science, February 1960
    [49] A. F. Moodie, Dynamical n-beam theory of electron diffraction, Encyclopedia Dictionary of Physics, Suppl. 4, Ed. A. Thewlis, 1972
    [50] M. Lentzen and K. Urban, Ultramicroscopy 62 (1996) 89
    [51] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran 2nd edition, Cambridge University Press, 1992
    [52] H. J. Ryser, Can J. Math. 9 (1957) 371
    [53] Y. Ye, G. Wang and J. Zhu, Journal of X-ray Science and Technology 10 (2001) 59
    [54] D. Gale, Pacific J. Math 7 (1957) 1073
    [55] K. J. Batenburg, PhD thesis at University Leiden (2006)
    [56] R. Kilaas, The MacTempas and CrystalKit HRTEM image simulation program, Total Resolution Co., CA, USA
    [57] Digital Micrograph™ 3.10.1, Gatan Inc., CA, USA
    [58] MATLAB®, The MathWorks Inc.
    [59] Amira™, Mercury Computer Systems Inc.
    [60] C. B. Boothroyd, Journal of Microscopy 190 (1998) 99
    [61] H. Lichte, Ultramicroscopy 20 (1986) 293
    [62] W. Coene and D. Van Dyck, Ultramicroscopy 15 (1984) 41
    [63] D. Van Dyck, Proc. 8th European Congress on E.M., Budapest (1984) 261
    [64] D. Van Dyck, Advances in Electronics and Electron Physics : Ed. P. Hawkes, Academic Press (1985 62p.) 346

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE