研究生: |
鍾朝安 Chao-An Jong |
---|---|
論文名稱: |
射頻濺鍍之氮氧化鉭薄膜特性研究 Characteristics of RF-Sputtered Tantalum oxynitride-Ta(N,O) Films |
指導教授: |
金重勳
Tsung Shune Chin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 160 |
中文關鍵詞: | 射頻濺鍍 、氮氧化鉭 、相變化光碟 、介電層 、微懸臂樑法 、奈米壓痕法 、光學性質 、機械性質 |
外文關鍵詞: | RF sputter, tantalum oxynitride, phase change optical disk, dielectric, microcantilever beam method, nanoindentation method, optical properties, mechanical properties |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以射頻磁控濺鍍法製作氮氧化鉭-Ta(N,O)薄膜。藉由鍍膜參數的調變,如鍍膜功率、基板溫度、通入反應性氣體比率等參數的變化,以探討薄膜在微觀結構上的變化,進而在光學上、熱學上以及在機械性質上的表現,以期在光碟用之介電層開發上有突破性的進展。
在室溫下所製備之氮氧化鉭薄膜呈現非晶質(amorphous)的結構,在經過700oC、一個小時、氬氣氣氛下退火或700oC、五分鐘快速升溫退火處理後,仍能保持非晶質結構。 經由場發射掃瞄式電子顯微鏡(FE-SEM)做截面掃瞄,薄膜顯微結構為柱狀成長結構。在薄膜表面粗糙度之均方根值方面,當基板不升溫(室溫)時,約為1.288±0.01 nm,經過800oC快速升溫退火處理後,約為8.479±0.01 nm;當基板溫度升至300oC時,約為0.217±0.01 nm。
在光學性質方面,波長範圍633nm至780nm,經過不同氮氧比例調變而得之氮氧化鉭薄膜,隨著氮氣通入比率增加其折射係數(n),由2.2變化至1.9,反射率多在 0.15 到 0.35 之間,穿透率 在0.75 到 0.95 之間。光學結構的變化以結構變化予以合理解釋。
在機械性質方面,利用微機電製程之微懸臂樑方法,來檢測薄膜之殘留應力及熱膨脹係數。在薄膜初鍍時,經由通入氧、氮流量的變化,薄膜之殘留應力皆為壓應力;當彈性係數變化範圍在150到200 GPa,其變化範圍由12.5 MPa到0 MPa,而熱膨脹係數則由7.5 x 10–7 /oC到 7.5 x 10–6 /oC。另外,利用奈米壓痕器來檢測薄膜的硬度及彈性行為。當普松比為0.3時,硬度變化由6 GPa到39 GPa,彈性係數由130 GPa到179 GPa。
經由鍍膜參數的調變,非晶質氮氧化鉭薄膜的光學折射係數高(>1.9)、殘留應力範圍與GeSbTe薄膜相當,熱膨脹係數可變化範圍大且多優於(ZnS)80(SiO2)20薄膜。機械強度方面,氮氧化鉭薄膜具有較(ZnS)80(SiO2)20薄膜高的彈性係數及硬度,對於記錄層記錄點因受熱變形後之調變以及抵抗能力強,將有助於記錄點邊緣的變形抵抗,以增強光學對比及覆寫能力。
In this study, the tantalum oxynitride-Ta(N,O) films were prepared by RF magnetron sputtering. By tuning the sputtering parameters, such as RF power, substrate temperatures, sputtering gas ratios such as like the N2/O2 flow ratio and the Ar fraction (Ar/(Ar+N2+O2)), the effects of microstructure on optical properties, thermal properties and mechanical properties were investigated. When the film was deposited at room temperature, it showed an amorphous phase, and remained amorphous after annealing at 700oC for one hour by using conventional furnace in Ar ambient, so as the rapid thermal annealing above 700oC for 5 min. The growth characteristic showed in the form of columnar, and the root mean square roughnesses of as-deposited films deposited at 25oC and 300oC, respectively, were 1.288±0.01 nm and 0.217±0.01 nm, and increased to 8.479±0.01 nm by RTA at 800oC for 5 min.
When the N2/O2 flow ratio varied from 4, 1 to 0.25, the crystalline tantalum nitride particles embedded in a continuous, ring-like and granular amorphous matrix were observed and the particle size for both of the tantalum nitride and tantalum oxide phase grew gradually. In the wavelength ranging from 633nm to 780nm, the refractive index (n) of the tantalum oxynitride films deposited on silicon wafer decreased from 2.2 to 1.9 as increasing N2/O2 flow ratios. The reflectance (0.15 to 0.35) and the transmittance (0.73 to 0.90) of studied films deposited on glass substrate changed with sputtering parameters. The microcantilever beam method was used to study the residual stress and thermal expansion coefficient. All the as-deposited films showed a compressive state and the CTE values varied with different N2/O2 flow ratios from 12.5 to 0 MPa and 7.5 x 10–7 /oC to 7.5 x 10–6 /oC, respectively. Compared with the values of (ZnS)80(SiO2)20 films (4.78±0.29 GPa and 39.5±1.2Gpa), the hardness and the elastic constant of Ta(N,O) films were ranging from 6~39±0.5 GPa and 130~179±3.2 GPa, respectively. The harder Ta(N,O) film without sulfur inter-diffusion will be a more suitable candidate as the dielectric layer of optical recording disk.
Keywords: RF sputter, tantalum oxynitride, columnar structure, microcantilever beam method, nanoindentation method, thermal traveling wave method, optical recording disk
References:
1. T. Ide, N. Ohshima, S. Ohkubo, M. Okada and O. Okada, “Phase Change Media for High Linear Velocity And High Recording Density” SPIE 1663 (1992) 305-310.
2. T. Ohta, N. Akahira, S. Ohara and I. Satoh, “High-Density Phase-Change Optical Recording” Optoelectronics-Devices and Technologies 10(3) (1995) 361-380.
3. R. H. Liu, Master thesis of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (2000).
4. M. Okada, S. Ohkubo and T. Ide, “Re-writable phase change type optical disk with suppressed recording mark distortion” US Patent No.5521901 (1996).
5. Y. Hajime, D. Hiroshi, S. Michiaki, S. Takashi, H. Makoto, K. Mikio, K. Yoshiyuki and A. Michihara, “Phase-change optical recording medium” US Patent No. 6096398 (2000).
6. A. Ueda, H. Deno, H. Kawakami and M. Nagao, 53rd Autumn Meeting of Jpn. Soc. Of Appl. Phys. Osaka (1992) 17p-T-16.
7. N. Nobukuni, M. Takashima, T. Ohno and M. Horie, “ Microstructural Changes in GeSbTe Films During Repetitious Overwriting in Phase Change Optical Recording” J. Appl. Phys. 78(12) (1995) 6980-6988.
8. N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira and T. Matsunaga, “Phase-Change Optical Disk Having a Nitride Interface Layer” Jpn. J. Appl. Phys. Part 1, No. 4B, 37 (1998) 2104-2110.
9. M. Suzuki, K. Furuya, K. Nishmura, K. Mori and I. Morimoto, Proc. SPIE 1316 (1990) 374.
10. H. Koyanagi, T. Ito, N. Miyamoto, Y. Sato and H. Ando, “Optical And Thermal Analyses on Multilayered Thin Films of A Phase-Change Optical Recording Disk” J. Appl. Phys. 66(3) (1989) 1045-1050.
11. J. J. Ho, T. C. Chong, L. P. Shi, Z. J. Liu and J. C. Lee, “Thermal Modeling of Grooved Phase Change Optical Recording Disk” Jpn. J. Appl. Phys. 38 (1999) 1604-1607.
12. C. A. Volkert and M. Wutting, “Modeling of Laser Pulsed Heating And Quenching in Optical Storage Media “ J. Appl. Phys. 86(4) (1999) 1808-1816.
13. S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structure” Phys. Rev. Lett. 21 (1968) 1450.
14. E. J. Evans, J. H. Helbers and S. R. Ovshinsky, “Reversible Conductivity Transformations in Chalcogenide Alloy Films” J. Non-cryst. Solids 2 (1970) 334.
15. J. Feinleib, “Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors” Appl. Phys. Lett. 18 (1971) 254.
16. C. Ryu, H. Lee, K. -W. Kwon, Alvin L.S. Loke, S. Simon Wong, Solid State Technology April (1999) 53.
17. J. O. Olowolafe, J. Li, J. W. Mayer, E. G. Colgan, “Effects of oxygen in TiNx on the diffusion of Cu in Cu/TiN/Al and Cu/TiNx/Si structures ” Appl. Phys. Lett. 58(5) (1991) 469.
18. K. Holloway, Peter M. Fryer, Cyril Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions” J. Appl. Phys. 71(11) (1992) 5433.
19. M. Takayama, A. Noya, T. Sase, A. Ohtaand K. Sasaki, “Properties of TaNx Films as Diffusion Barriers in the Thermal Stable Cu/Si Contact Systems“ J. of Vacuum Science & Tech. B14(2) (1996) 674.
20. O. Auciello, S. Chevacharoenkul, M. S. Ameen and J. Duarte, “Controlled Ion Beam Sputter Deposition of W/Cu/W Layerer Films for Microelectronic Applications” J. Vac. Sci. Technol. A 9 (1991) 625.
21. J. S. Reid, E. K. Kolawa, R. P. Ruiz, and M. –A. Nicolet, Thin Solid Films 236 (1993) 319.
22. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. –A. Nicolet, “Tantalum-based diffusion barriers in Si/Cu VLSI metallizations” J. Appl. Phys. 70(3) (1991) 1369.
23. J. S. Reid, X. Sun, E. K. Kolawa and M. –A. Nicolet, IEEE Electron Device Lett. EDL-15 (1994) 298.
24. K.-S. Ahn, Y.-E. Sung, "Initial Growth Step and Annealing Effect of Ta2O5 Formed by Anodization of Ta Foil at Ammonium Tartrate Electrolyte" J. Electrochem. Soc., in press, 2000.
25. E. Atanassova, T. Dimitrova and J. Koprinarova, “AES and XPS study of thin RF-sputtered Ta2O5 layers” Appl. Surf. Sci. 84(2) (1994)193.
26. N. Novkovski, M. Pecovska-Gjorgjevich, Elena Atanassova and T. Dimitrov Structure Containing RF Magnetron Sputtering Thin Ta2O5 Films on Silicon” Phys. Stat. Sol. A 172 (1999) R9.
27. A.Y. Mao, K.A. Son, J.M. White, D.L. Kwong, D.A. Roberts, and R.N. Vrtis, "Study of thermal stability of CVD Ta2O5/Si interface," Mater. Res. Soc. Symp. Proc. 567, (1999) 473-479.
28. J. G. Simmons, J. Phys. Chem. Solid, 32 (1971) 1987.
29. M. Copel, P. R. Duncombe, D. A. Neumayer, T. M. Shaw and R. M. Tromp, “Metallization Induced Band Bending of SrTiO3(100) ans Ba0.7Sr0.3TiO3 ” Appl. Phys. Lett. 70 (1997) 3227.
30. J. Y. Zhang, I. W Boyd, V. Dusastre and D. E. Williams, “Ultraviolet Annealing of Tantalum Oxide Films Grown by Photo-induced Chemical Vapour Deposition” J. Phys. D: Appl. Phys. 32 (1999) L91-L95.
31. I.-I Kim, J.-S. Kim, B.-W. Cho, S.-D. Ahn, J.-S. Chun, and W.-J. Lee, “Effects of deposition temperature on the electrical properties of electron cyclotron resonance plasma-enhanced chemical vapor deposition Ta2O5 film and the formation of interfacial SiO2 “ J. Mater. Res. 10(11) (1995) 2864.
32. Y. Chen, R. Singh and J. Narayan, “ Deposition of Tantalum oxide Films by Dual Spectral Source Assisted MOCVD” J. Electron. Mater. 26(4) (1997) 350-354.
33 O. Shigetaro and T. Qi, “Comparative Studied on Tantalum and Tantalum oxides Thin Films Structures for Laser Mirriors, Deposition by Ion Assisted Gun” Proc. SPIE 2966 (1997) 214-224.
34. O. Atsushi, S. Kazutomi, C. Kiyoshi, “Magneto-optical recording medium” US patent, No.US5560998, 1 Oct. 1996.
35. S. Masahiko, H. Kazuhiko, O. Atsushi, “Magneto-optical recording medium“ US patent, No.US5786078, 28 July, 1998.
36. D. W. Denlinger, E.N. Abarra, K. Allen, P.W. Rooney, M.T. Messer, S.K. Watson and F. Hellman, “Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K” Rev. Sci. Instrum 65 (1994) 946.
37. J. Liu and Y. C. Tai, "MEMS for Pressure Distribution Studies of Gaseous Flows in Microchannels" Proceedings, 1995 IEEE Micro Electro Mechanical Systems Workshop (MEMS '95), Amsterdam, The Netherlands, Jan. 29-Feb. 2 (1995) 209-215.
38. K. C. Pong, C. M. Ho, J. Q. Liu, and Y. C. Tai, "Non-Linear Pressure Distribution in Uniform Microchannels" Application of Microfabrication to Fluid Mechanics 1994 presented at 1994 ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, Nov. 6-11 (1994) 51-56.
39. J. Q. Liu and Y. C. Tai, "Micromachined Channel/Pressure Sensor Systems for Micro Flow Studies" Technical Digest, The 7th International Conference on Solid-State Sensors and Actuators (Transducers '93), Yokohama, Japan, Jun. 7-10 (1993) 995-997.
40. C. J. Morris and F. K. Forster, “Optimization of A Circular Piezoelectric Bimorph for A Micro-pump Driver” Journal of Micromechanics and Microengineering, 10(3) (2000) 459-65.
41. S. S. Lee, L. Y. Lin, M. C. Wu, "Surface-Micromachined Free-Space Micro-Optical Systems Containing Three-Dimensional Micro-Gratings" Applied Physics Letters, 67(15) (1995) 2135-2137.
42. M. C. Wu, K. S. J. Pister, S. S. Lee, L. Y. Lin, “Micro-Optical System on A Chip” IEEE LEOS Newsletters, (1995) 8-9.
43. W. Fang and J. A. Wickert, “ Determining mean and gradient residual stress in thin films using miceomachined cantilevers” Journal of Micromechanics and Microengineering, 6 (1996) 301-309.
44. J. F. Manceau, L. Robert, F. O. Bastien, C. Oytana and S. Biwersi, “Measurement of residual stresses in a plate using a vibrational technique-application to electrolytic nickel coatings” Journal of microelectromechanical systems, 5 (1996) 243-249.
45. J. H. Jou and L. J. Chen, “Simultaneous Determination of The Biaxial Relaxation Modulus And Thermal expansion coefficient of rigid-rod polyimide films using a bending –beam technique” Macromolecules, 25 (1992) 179-184.
46. A. B. Marchant, “Optical Recording” (Addison-Wesley, New York, 1990) Chap. 5, 106
47. C. -Y. Lo, master Thesis of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (1999).
48. W. Riethmuller and W. Benecke, “Thermal excited silicon microactuators” IEEE Transactions on electron devices 35 (1988) 758-763.
49. N. C. Macdonald, L. Y. Chen, J. J. Yao, Z. L. Zhang, J. A. Mcmillan and D. C. Thomas, “ Selective Chemical Vapor Deposition of Tungsten for Microelectromechanical Structures” Sensors and Actuators, A, 20 (1989) 123-133.
50. S. P. Timoshenko, “Analysis of bi-metal thermostats” J. Opt. Soc. Am., 11 (1925) 233-255.
51. W. Fang, H. -C. Tsai, C. -Y. Lo, “Determining Thermal Expansion Coefficients of Thin Film Using Micromachined Cantilevers” Sensors and Actuators, 72, (1999) 22-27.
52. N. Huber, D. Munz and Ch. Tsakmakis, “Determination of Young’s Modulus by Spherical Indentation” J. Mater. Res., 12(9) (1997) 2459-2469.
53. M. S. Bobji and S. K. Biswas, “Estimation of Hardness by Nanoindentation of Rough Surface” J. Mater. Res., 13(11) (1998) 3227-3233.
54. C. W. Shih, M. Yang and J. C. M. Li, “Effect of Tip Radius on Nanoindentation” J. Mater. Res., 6(12), (1991) 2623-2628.
55. G. M. Pharr and W. C. Oliver, “Measurement of Thin Film Mechanical Properties Using Nanoindentation” MRS Bulletin July (1992) 28-33.
56. S. M. Hues, C. F. Draper, K. P. Lee and R. J. Colton, “Effect of PZT and PMN Actuator Hysteresis And Creep on Nanoindentation Measurements Using Force Microscopy” Rev. Sci. Instrum., 65(5) (1994) 1561-1655.
57. A. Shimamoto and K. Tanaka, “Development of a Depth Controlling Nanoindentation Tester With Subnanometer Depth And Submicro-newton Load Resolutions” Rev. Sci. Instrum., 68(9) (1997) 3494-3503.
58. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments” J. Mater. Res., 7 (1992) 1564-1583.
59. P. Jerome; D. Patrice and B. Valery, Manufacture of DWDM Multidielectric Narrowband Optical Filters” Proc. SPIE 3408 (1998) 168-171.
60. M. S. Yang, P.A. Chen and C.C. Lee, "Diamond-Like Carbon Film Prepared by RF Sputtering" J. of Opt. Eng. 4 (1987) 55-62.
61. C. -W. Lee and J. –H. Yoo, “Optical Head Assembly Having Compatibility With Digital Versatile Disk (DVD) And A Recordable Compact Disk (CD-R) And for Obtaining A High-speed Access Time” US. Patent No. 6078555 (2000).
62. Y. Ohji, Y. Matsui, T. Itoga, M. Hirayama, Y. Sugawara, K. Torii, H. Miki, M. Nakata, I. Asano, S. Iijima, and Y. Kawamoto “ Ta2O5 Capacitors Dielectric Material for Giga-bit DRAMs" [Hitachi] IEDM (1995) 111.
63. Yasuhiro Uemoto, “Current Status And Future of SrBi2Ta2O9 (SBT) Ferroelectric Nonvolatile Memories” OYO Buturi, 67(11) (1998) 1256-1262.
64. W. R. Grove, Phil Trans. Roy. Soc., London A 142 (1852) 87.
65. M. Faraday, Phil. Trans. 147 (1857) 145.
66. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy” (Perkin-Elmer Corp. Physical Electronics Division, Minnesota 1978).
67. A. R. Forouhi and I. Bloomer, “Method And Apparatus of Determining Optical Constants of Amorphous Semiconductors And Dielectrics” U.S. Patent No. 4905170 (1990).
68. A. R. Forouhi and I. Bloomer, “Optical Dispersion Relations for Amorphous Semiconductors and Amorphous Dielectrics” Phys. Rev. B, 34 (1986) 7018.
69. A. R. Forouhi and I. Bloomer, “Optical Prperties of Crystalline Semiconductors and Dielectrics” Phys. Rev. B, 38 (1988) 1865.
70. J. Szcrzyrbowski, “Optical properties of Rough Thin Films” Thin Solid Films, 130 (1985) 57.
71. D. M. Bhusari, C. W. Teng, K. H. Chen, S. L. Wei and L. C. Chen, “Traveling Wave Method for Measurement of Thermal Conductivity of Thin Films” Rev. Sci. Instrum. 68(11) (1997) 4180.
72. P. G. Kosky, “A method of measurement of thermal conductivity: Application to free-standing diamond sheet” Rev. Sci. Instrum. 64 (1993) 1071.
73. G. S. Chen, P. Y. Lee and S. T. Chen, “ Phase Formation Behavior And Diffusion Barrier Properties of Reactively Sputtered Tantalum-Based Thin Films Used in Semiconductor Metallization” Thin Solid Films 353 (1999) 264-273.
74. M. Stravrev, D. Fischer, C. Wenzel, K. Drescher and N. Mattern, “Crystallographic and Morphological Characteristics of Reactively Sputtered Ta, Ta-N and Ta-O-N Thin Films” Thin Solid Films 307 (1997) 79-88.
75. K.H. Nam, "Annealing Effect of Ta2O5 Thin Film Deposited by RF Reactive Sputtering" J. Res. Inst. Indust. Tech. of K.S.U., 3(1) (1993) 47-53.
76. H.-M. Kim, S.-L. Cho, B.-S. Kim, and K.-B. Kim, “Structure and Properties of Sputter Deposited Tantalum Oxynitride Film” 197th Meeting - Toronto, Ontario, Canada May 14-18, 2000 (Seoul National University, Korea).
77. A.J. Ledbetter and A. J. Apling, “Diffraction Studies of Glass Structure” J. Non-crys. Solids 15 (1974) 250.
78. J. Gatterer, D. Dufek, P. Ettmayer and R. Kieffer, Monatsh. Chem., 106 (1975) 1137-1147.
79. H. Jehn and E. Olzi, “High Temperature Solid Solubility Limit and Phase Studies in The System Tantalum-Oxygen” J. Less-commom. Met. 27 (1972) 297-309.
80. J. A. Thornton, “The Microstructure of Sptter-deposition Coatings” J. Vac. Sci. Technol., A 4, (1986) 3059.
81. M. Ohring, “The Materials Science of Thin Films” Academic Press (1992) 232.
82. X. Sun, E. Kolawa, J. S. Chen, J. S. Reid and M. –A. Nicolet, ”Properties of Reactively Sputter-Deposited Ta-N Thin Films” Thin Solid Films 236 (1993) 347.
83. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy” (Perkin-Elmer Corp. Physical Electronics Division, Minnesota 1978).
84. H. A. Choon and K. Sugimoto, “Ellipsimetric Examination of Growth and Dissolution Rates of Ta2O5 Films Formed by Metalorganic Chemical Vapor Deposition” J. Electrochem. Soc. 139(7) (1992) 1956.
85. H. ONO and K. I. Koyanagi, “Infrared Absorption Peak Due to Ta-O Bonds in Ta2O5 Thin Films” Appl. Phys. Lett. 77(10) (2000) 1431.
86. R. A. B. Devine, “Nondestructive Measurement of Interfacial SiO2 Films Formed During Deposition and Annealing of Ta2O5” Appl. Phys. Lett. 68(14) (1996) 1924.
87. H. ONO and K. I. Koyanagi, “Formation of Silicon-Oxide Layers at the Interface Between Tantalum Oxide and Silicon Substrate” Appl. Phys. Lett. 75(22) (1999) 3521.
88. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson and R. S. Urdahl, “Intermixing at the Tantalum Oxide/Silicon Interface in Gate Dielectric Structure” Appl. Phys. Lett. 73(11) (1998) 1517.
89. “Optics” 2nd edition, Ch.3 Electromagnetic Theory, Photons and Light, 56.
90. “Optics” 2nd edition, Ch.9 Interference, 369.
91. “Optics” 2nd edition, Ch.4 The propagation of Light, 102.
92. Hall, E. O. Pro. Phys. Soc. London, vol. B64 (1951) 747, Petch, N. J. Iron and Steel Inst., 174 (1953) 25.
93. C. S. Shin, D. Gall, P. Desjardins, A. Vailionis, H. Kim, I. Petrov and J. E. Greene, “Growth and Physical Properties of Epitaxial Metastable Cubic TaN(001)” Appl. Phys. Letts. 75(24) (1999) 3808-3810.
94. S. P. Baker, C. R. Ottermann, M. Laube, F. Rauch and K. Bange, “Dependence of Hardness and Stiffness on Density of Ta2O5 and TiO2 Layers“ Mat. Res. Soc. Symp. Proc. 436 (1997) 403-408.
95. N. Hitoshi, N. Kunihisa, A. Gentaro, Y. Tomoya, W. Yuji and A. Takeshi, “Optical recording medium“ US Patent No.6071588 (2000) Japan.
96. W. Fang, J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers” J. Micromech. Microeng., 6 , (1996) 301-309.
97. H. Kitaura, T. Akiyama, T. Ohta, K. Nagata, K. Kawahara and N. Yamada, “Optical information recording medium” US Patent No.5681632 (1997) Japan.
98. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids” 2nd ed. (Clarendon, Oxford,1959).
99. Y. Takata, H. Haneda, T. Mitsuhashi and Y. Eada, “Evaluation of Thermal Diffusivity for Au Thin Films Using Femtosecond Laser Excitation Technique” The first Japan-US Workshop on Combinational Material Science and Technology, 1-3, Oct. (2000)