研究生: |
謝宗益 Hsieh,Tsung-Yi |
---|---|
論文名稱: |
一個多參數 p-拉普拉斯狄利克雷問題的演化分枝圖 Evolutionary bifurcation diagrams for a multiparameter p-Laplacian Dirichlet problem |
指導教授: |
王信華
Wang, Shin-Hwa |
口試委員: |
葉宗鑫
Yeh, Tzung-Shin 洪國智 Hung, Kuo-Chih |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 分枝圖 、演化 、正解 、確切解個數 、p-拉普拉斯 、⊂型分枝曲線 、時間映射 |
外文關鍵詞: | Bifurcation diagram, Evolution, Positive solution, Exact multiplicity, p-Laplacian, ⊂-shaped bifurcation curve, Time map |
相關次數: | 點閱:70 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究一維空間p-拉普拉斯多參數擴散問題
(φ_{p}(u'(x)))' + λ(ku^{p-1} + ∑_{i=1}^{m} a_{i} u^{q_{i}}) - μ∑_{j=1}^{n} b_{j} u^{r_{j}} = 0, -1 < x < 1, u(-1) = u(1) = 0, 其中p > 1,(φ_{p}(u'(x)))' 是一維p-拉普拉斯算子, 且 λ > 0,μ ≥ 0 是兩個分枝參數。我們假設 k ≥ 0, 0 < p-1 < q_{1} < q_{2} < ⋅⋅⋅ < q_{m} < r_{1} < r_{2} < ⋅⋅⋅ <r_{n}, m,n ≥ 1, a_{1}= 1, a_{i} > 0 當 i=1,2,…,m 且b_{1}=1, b_{j} > 0 當j=1,2,…,n. 我們主要證明,在(λ,||u||_{∞})-平面,分枝圖由嚴格遞減曲線組成當μ=0,並且始終由⊂形曲線組成當 μ > 0。然後,我們研究了當 μ ≥ 0變化時分枝圖的結構和演化。
We study the multiparameter p-Laplacian Dirichlet problem
(φ_{p}(u'(x)))' + λ(ku^{p-1} + ∑_{i=1}^{m} a_{i} u^{q_{i}}) - μ∑_{j=1}^{n} b_{j} u^{r_{j}} = 0, -1 < x < 1, u(-1) = u(1) = 0,
where p > 1, φ_{p}(y) = |y|^{p-2} y, (φ_{p}(u'(x)))' is the one-dimensional p-Laplacian, λ > 0 and μ ≥ 0 are two bifurcation parameters. We assume that k ≥ 0, 0 < p-1 < q_{1} < q_{2} < ⋅⋅⋅ < q_{m} < r_{1} < r_{2} < ⋅⋅⋅ <r_{n}, m,n ≥ 1, a_{1}= 1, a_{i} > 0 for i=1,2,...,m and b_{1}=1, b_{j} > 0 for j = 1, 2, ..., n. We mainly prove that, on the (λ,||u||_{∞})-plane, the bifurcation diagram consists of a strictly decreasing curve for μ = 0, and always consists of a ⊂-shaped curve for fixed μ > 0. We then study the structures and evolution of the bifurcation diagrams with varying μ ≥ 0.
[1] I. Addou, Multiplicity of solutions for quasilinear elliptic boundary-value problems, Electron. J. Di§erential Equations 1999 (21) (1999) 1—27.
[2] J.G. Cheng, Uniqueness results for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 311 (2005) 381—388.
[3] J.I. Díaz, Nonlinear partial di§erential equations and free boundaries, Vol. I. Elliptic equations, Research Notes in Mathematics, 106, Pitman, Boston, MA, 1985.
[4] J.I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction, Ex- tracta Math. 16 (2001) 303—341.
[5] J.I. Díaz, J. Hernández, F.J. Mancebo, Branches of positive and free boundary solu- tions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. 352 (2009) 449—474.
[6] H.B. Dwight, Tables of integrals and other mathematical data, fourth edition, The Macmillan Publishing Company, New York, 1965.
[7] K.-C. Hung, Y.-N. Suen, S.-H. Wang, Structures and evolution of bifurcation dia- grams for a one-dimensional di§usive generalized logistic problem with constant yield harvesting, J. Di§erential Equations 269 (2020) 3456—3488.
[8] K.-C. Hung, S.-H. Wang, A complete classification of bifurcation diagrams of classes of multiparameter p-Laplacian boundary value problems, J. Di§erential Equations 246 (2009) 1568—1599.
[9] G.J.O. Jameson, Counting zeros of generalised polynomials: Descartes’ rule of signs and Laguerre’s extensions, Math. Gaz. 90 (2006) 223—234.
[10] E.N. Laguerre, Sur la thérie deséuations numéiques, J. Math. Pures et App. 9 (1883) (in Oeuvres de Laguerre, vol. 1, Gauthier-Villars et files, Paris (1898), pp. 3—47.)
[11] J.D. Murray, A simple method for obtaining approximate solutions for a class of di§usion—kinetics enzyme problems. II. Further examples and nonsymmetric prob- lems, Math. Biosci. 3 (1968) 115—133.
[12] H.L. Royden, Real analysis, third edition, The Macmillan Publishing Company, New York, 1988.
[13] S.-H. Wang, T.-S. Yeh, Exact multiplicity and ordering properties of positive solu- tions of a p-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl. 287 (2003) 380—398.
[14] S.-H. Wang, T.-S. Yeh, Classification of bifurcation diagrams of a p-Laplacian Dirich- let problem with examples, J. Math. Anal. Appl. 369 (2010) 188—204.