簡易檢索 / 詳目顯示

研究生: 鄭安寧
Cheng, An Ning
論文名稱: Cdc7-Dbf4 透過磷酸化 HSP90 以調節 ATR 依賴型 DNA 複製監控系統
Cdc7-Dbf4 Phosphorylates HSP90 to Regulate the ATR-mediated S-phase checkpoint
指導教授: 呂平江
Lyu, Ping-Chiang
李岳倫
Lee, Alan Yueh-Luen
口試委員: 謝小燕
張茂山
王惠君
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 80
中文關鍵詞: Cdc7-Dbf4S-phase CheckpointHSP90DNA repair
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞分裂週期素7 (Cell Division Cycle 7, Cdc7) 是一種絲氨酸-蘇氨酸激酶 (serine-threonine kinase),與Dbf4結合始有活性。Cdc7-Dbf4激酶不僅是DNA複製起始所需的蛋白,在真核生物複製期檢查點 (S-phase checkpoint) 的訊息傳導也有重要的作用。在哺乳動物中,Cdc7-Dbf4在S期檢查點的功能以及作用機制仍未明。我們先前的研究發現,在DNA受到損傷時,ATM和ATR會磷酸化Dbf4的絲氨酸539的位置,但Cdc7的激酶活性仍然存在未被抑制。因此我們推測在DNA損傷反應(DNA damage response)時,Cdc7-Dbf4可能為ATM和ATR的下游並扮演了調節S期檢查點和抑制DNA複製的角色。前人在酵母菌的研究發現,Cdc7-Dbf4可與熱休克蛋白90 (HSP90) 和HCLK2二者形成的分子伴侶複合體結合一起,而此複合體也可穩定所有包括ATM和ATR之磷脂酰肌醇3-激酶相關激酶(PIKKs)。因此我們推測,HCLK2-HSP90 可能為Cdc7-Dbf4 的下游受質。我們證明了在DNA損傷反應下,CDC7-DBF4與HCLK2-HSP90結合並磷酸化HSP90絲氨酸 164 的位置。利用CDC7激酶的抑製劑PHA-767491,可破壞CDC7-DBF4與HSP90-HCLK2之間的相互作用,並抑制HCLK2-HSP90伴侶功能,證明CDC7激酶的活性對於HCLK2-HSP90之間的相互作用和分子伴侶功能是重要的。此外,抑制HSP90的磷酸化影響ATR激酶、HCLK2和MRE11-Rad50-NBS1 (MRN complex) 複合體的穩定性和功能。綜上所述,CDC7-DBF4藉由磷酸化HSP90來調控S期檢查點以影響的ATR激酶的穩定性,此發現可以解釋CDC7-DBF4在多種癌症中過度表達的現象的原因是促進DNA 修復進而增加癌細胞存活率。未來期望可結合 HSP90 和 CDC7 的抑制劑應用於未來的癌症治療。


    Abstract
    Cdc7-Dbf4 kinase is not only required for DNA replication but plays important roles in S phase checkpoint signaling in eukaryotes. However, the mechanism underlying Cdc7-Dbf4 functions in the S phase checkpoint in mammals is elusive. Our previous data showed that ATM and ATR phosphorylate Dbf4 in response to DNA damages, but the kinase activity of Cdc7 is still remained. Therefore, we hypothesis that Cdc7-Dbf4 may act as a downstream effector of ATR to regulate the S-phase checkpoints and inhibit DNA replication. HSP90 is upregulated in various cancers and binds with HCLK2 to form a chaperone complex to stabilize all phosphatidylinositol 3-kinase-related kinases (PIKKs) including ATM and ATR. We demonstrated that Cdc7-Dbf4 interacts with HCLK2-HSP90 complex and phosphorylates HSP90 at the N-terminus under DNA damage response. PHA-767491, the inhibitor of Cdc7 kinase, disrupts the interaction of Cdc7-Dbf4 with HSP90-HCLK2 complex and prevents the HCLK2-HSP90 chaperone function, suggesting that the kinase activity of Cdc7 is important for the interaction and function of HCLK2-HSP90 complex. Furthermore, the phosphorylation of HSP90 affects the stability and function of the complex of ATR kinase, HCLK2, and Mre11-Rad50-NBS1. These results suggest that Cdc7-Dbf4 regulates S-phase checkpoint signaling via affecting the stability of ATR kinase through the phosphorylation toward HSP90, providing a rationale why overexpressed Cdc7-Dbf4 promotes cancer cells survival and provides a new insight for cancer therapy.

    誌謝 I 摘要 II Abstract IV Abbreviation XII Chapter1 Introduction 1 1.1 Cdc7-Dbf4 is a switch of DNA replication initiation 1 1.2 DNA damage response and cell cycle checkpoint 2 1.3 Cdc7-Dbf4 and S-phase checkpoint 3 1.4 HCLK2-HSP90 complex play a role in S-phase checkpoint 5 1.5 The goals of this study 6 Chapter 2 Materials and Methods 8 2.1 Cell culture and Cell synchronization 8 2.2 Antibodies 9 2.3 Whole cell lysate and chromatin isolation 9 2.4 Short hairpin RNA (shRNA) and retroviral infection 10 2.5 In vitro Kinase Assays 11 2.6 Reverse transcription-polymerase chain reaction (RT-PCR) 12 2.7 Immunohistochemistry (IHC) staining 12 2.8 Adenovirus construction and infection 13 2.9 Cell viability and survival assay 13 2.10 Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay 14 2.11 Homologous recombination repair (HR) assay 14 2.12 Single cell gel electrophoresis (Comet Assay) 15 2.13 In-gel digestion 16 2.14 Shotgun proteomic identifications 16 2.15 Fluorescence activated cell sorting (FACS) analysis 18 2.16 Immunofluorescence staining 18 2.17 Statistical methods 19 Chapter 3 Results 21 3.1 Cdc7 kinase overexpression promotes cell survival and protects cells from genotoxic stress-induced apoptosis 21 3.2 Overexpression of Cdc7 slows replication fork progression and promotes DNA repair 22 3.3 Cdc7 overexpression causes DNA damage which is related with excess initiation of DNA replication 24 3.4 Cdc7-Dbf4 interacts with HSP90α-HCLK2 25 3.5 HSP90α is a direct substrate of Cdc7-Dbf4 28 3.6 HSP90-S164A failed to activate the ATR-mediated S-phase checkpoint and HR repair 30 Chapter 4 Discussion 33 4.1 Cdc7 overexpression promotes HR repair to prevent apoptosis in cancer cells 33 4.2 Cdc7 is important for S-phase checkpoint recovery and replication restart 34 4.3 Cdc7 phosphorylates HSP90α S164 to promote HR repair 35 4.4 Inhibition of Cdc7 kinase activity may regulate the chaperone function of HSP90 to provide a new method for cancer therapy 35 Chapter 5 Conclusion 38 Figures 39 Figure 1. Cdc7 overexpression inhibits apoptotic activation in cancer cells in response to genotoxic agents. 39 Figure 2. TUNEL assay of Cdc7 overexpression on genotoxin-induced apoptosis 40 Figure 3. Effect of Cdc7 overexpression on the proliferation rate of DOK cells in response to genotoxic agents. 41 Figure 4. Cdc7 overexpression inhibits apoptotic activation in DOK cells in response to genotoxic agents. 42 Figure 5. Cdc7 overexpression increase H2AX phosphorylation. 43 Figure 6. Cdc7 overexpression causes increase H2AX phosphorylation shown by immunofluorescence. 44 Figure 7. Comet assays indicate DSB formation when Cdc7 is overexpressed. 45 Figure 8. Overexpressed Cdc7 increase H2AX phosphorylation in U2OS cells detected by FACS. 46 Figure 9. Cdc7 overexpression causes replication-mediated DNA double strand break caused by excess replication, which activates the ATR-mediated checkpoint. 47 Figure 10. Cdc7 overexpression inhibits BrdU incorporation. 48 Figure 11. BrdU incorporation is inhibited after Cdc7 transiently overexpression. 49 Figure 12. HCLK2 knock-down cells failed to activate ATR-Chk1 pathway. 50 Figure 13. Cdc7-Dbf4 interacts with HCLK2 51 Figure 14. The association between Cdc7-Dbf4 and HCLK2 increases in response to replication or oxidative stress. 52 Figure 15. Dbf4 interacts with HSP90α. 53 Figure 16. Overexpressed Cdc7 increases HSP90α protein stability. 54 Figure 17. Cdc7 does not influence transcriptional level of HSP90 and HCLK2. 55 Figure 18. Inhibition Cdc7 kinase activity affects the interaction between HSP90 and DNA response proteins. 56 Figure 19. HSP90 inhibitor, 17-AAG causes ATR, HCLK2, TTI1, RAD50 and Chk1 unstable. 57 Figure 20. 17-AAG inhibits the interaction between HSP90α and ATR or Chk1. 58 Figure 21. HSP90α protein and phosphorylation level are increase in response to DNA damage. 59 Figure 22. Cdc7-Dbf4 in vitro kinase assay. 60 Figure 23. Cdc7-Dbf4 phosphorylated Hsp90α on the N- and C- terminus. 61 Figure 24. Cdc7-Dbf4 phosphorylates HIS-HSP90α at serine 164. 62 Figure 25. HSP90α-S164A mutant could not be phosphorylated by Cdc7-Dbf4. 63 Figure 26. HSP90α S164A mutant affects the ATR-CHK1 signaling pathway under DNA damage. 64 Figure 27. HSP90-S164A failed to activate HR repair. 65 Figure 28. The binding affinity between HSP90α-S164A and Chk1 is lower than HSP90α wild-type and Chk1. 66 Figure 29. Scheme of Cdc7-Dbf4 kinase regulate ATR mediate S-phase Checkpoint. 67 Table 68 Table 1. Primers used for HSP90α mutagenesis. 68 Table 2. List of HSP90α phosphorylation sites and peptides identified by mass spectrometry 69 Appendix 70 Appendix 1. Cdc7 overexpression impairs S-phase progression after HU-induced cell arrest. 70 Appendix 2. Cdc7 overexpression stimulates HR repair. 71 Reference 72

    1. Jiang, W., McDonald, D., Hope, T. J., and Hunter, T. (1999) Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18, 5703-5713
    2. Kelly, T. J., and Brown, G. W. (2000) Regulation of chromosome replication. Annu Rev Biochem 69, 829-880
    3. Bell, S. P., and Dutta, A. (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-374
    4. Arias, E. E., and Walter, J. C. (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21, 497-518
    5. Johnston, L. H., Masai, H., and Sugino, A. (1999) First the CDKs, now the DDKs. Trends in Cell Biology 9, 249-252
    6. Jares, P., Donaldson, A., and Blow, J. J. (2000) The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? EMBO reports 1, 319-322
    7. Tognetti, S., Riera, A., and Speck, C. (2015) Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 124, 13-26
    8. Simon, N. E., and Schwacha, A. (2014) The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BioMed research international 2014, 549719
    9. Jackson, A. L., Pahl, P. M., Harrison, K., Rosamond, J., and Sclafani, R. A. (1993) Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 13, 2899-2908
    10. Yoon, H. J., Loo, S., and Campbell, J. L. (1993) Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle. Mol Biol Cell 4, 195-208
    11. Wu, X., and Lee, H. (2002) Human Dbf4/ASK promoter is activated through the Sp1 and MluI cell-cycle box (MCB) transcription elements. Oncogene 21, 7786-7796
    12. Yamada, M., Sato, N., Taniyama, C., Ohtani, K., Arai, K.-i., and Masai, H. (2002) A 63-Base Pair DNA Segment Containing an Sp1 Site but Not a Canonical E2F Site Can Confer Growth-dependent and E2F-mediated Transcriptional Stimulation of the Human ASKGene Encoding the Regulatory Subunit for Human Cdc7-related Kinase. Journal of Biological Chemistry 277, 27668-27681
    13. Godinho Ferreira, M., Santocanale, C., Drury, L. S., and Diffley, J. F. X. (2000) Dbf4p, an Essential S Phase-Promoting Factor, Is Targeted for Degradation by the Anaphase-Promoting Complex. Molecular and Cellular Biology 20, 242-248
    14. Sato, N., Sato, M., Nakayama, M., Saitoh, R., Arai, K., and Masai, H. (2003) Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Genes to cells : devoted to molecular & cellular mechanisms 8, 451-463
    15. Yamada, M., Watanabe, K., Mistrik, M., Vesela, E., Protivankova, I., Mailand, N., Lee, M., Masai, H., Lukas, J., and Bartek, J. (2013) ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 27, 2459-2472
    16. Hoeijmakers, J. H. J. (2009) DNA Damage, Aging, and Cancer. New England Journal of Medicine 361, 1475-1485
    17. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15, 2177-2196
    18. Bartek, J., and Lukas, J. (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19, 238-245
    19. Houtgraaf, J. H., Versmissen, J., and van der Giessen, W. J. (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovascular Revascularization Medicine 7, 165-172
    20. Lee, J. H., and Paull, T. T. (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741-7748
    21. Bailis, J. M., Bernard, P., Antonelli, R., Allshire, R. C., and Forsburg, S. L. (2003) Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5, 1111-1116
    22. Sasanuma, H., Hirota, K., Fukuda, T., Kakusho, N., Kugou, K., Kawasaki, Y., Shibata, T., Masai, H., and Ohta, K. (2008) Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev 22, 398-410
    23. Vaziri, C., and Masai, H. (2010) Integrating DNA replication with trans-lesion synthesis via Cdc7. Cell cycle (Georgetown, Tex.) 9, 4818-4823
    24. Branzei, D., and Foiani, M. (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11, 208-219
    25. Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36, 617-656
    26. Petermann, E., and Helleday, T. (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11, 683-687
    27. Matthews, L. A., Selvaratnam, R., Jones, D. R., Akimoto, M., McConkey, B. J., Melacini, G., Duncker, B. P., and Guarne, A. (2014) A novel non-canonical forkhead-associated (FHA) domain-binding interface mediates the interaction between Rad53 and Dbf4 proteins. J Biol Chem 289, 2589-2599
    28. Pasero, P., Duncker, B. P., Schwob, E., and Gasser, S. M. (1999) A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication. Genes Dev 13, 2159-2176
    29. Weinreich, M., and Stillman, B. (1999) Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J 18, 5334-5346
    30. Tsuji, T., Lau, E., Chiang, G. G., and Jiang, W. (2008) The role of Dbf4/Drf1-dependent kinase Cdc7 in DNA-damage checkpoint control. Mol Cell 32, 862-869
    31. Tenca, P., Brotherton, D., Montagnoli, A., Rainoldi, S., Albanese, C., and Santocanale, C. (2007) Cdc7 is an active kinase in human cancer cells undergoing replication stress. J Biol Chem 282, 208-215
    32. Lee, A. Y., Chiba, T., Truong, L. N., Cheng, A. N., Do, J., Cho, M. J., Chen, L., and Wu, X. (2011) Dbf4 is a direct downstream target of ATM and ATR to regulate the intra S-phase checkpoint. J Biol Chem In press
    33. Heffernan, T. P., Unsal-Kacmaz, K., Heinloth, A. N., Simpson, D. A., Paules, R. S., Sancar, A., Cordeiro-Stone, M., and Kaufmann, W. K. (2007) Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 282, 9458-9468
    34. Kim, J. M., Kakusho, N., Yamada, M., Kanoh, Y., Takemoto, N., and Masai, H. (2008) Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint. Oncogene 27, 3475-3482
    35. Bonte, D., Lindvall, C., Liu, H., Dykema, K., Furge, K., and Weinreich, M. (2008) Cdc7-Dbf4 kinase overexpression in multiple cancers and tumor cell lines is correlated with p53 inactivation. Neoplasia 10, 920-931
    36. Montagnoli, A., Moll, J., and Colotta, F. (2010) Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16, 4503-4508
    37. Allen, C., Ashley, A. K., Hromas, R., and Nickoloff, J. A. (2011) More forks on the road to replication stress recovery. J Mol Cell Biol 3, 4-12
    38. Montagnoli, A., Tenca, P., Sola, F., Carpani, D., Brotherton, D., Albanese, C., and Santocanale, C. (2004) Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer research 64, 7110-7116
    39. Im, J. S., and Lee, J. K. (2008) ATR-dependent activation of p38 MAP kinase is responsible for apoptotic cell death in cells depleted of Cdc7. J Biol Chem 283, 25171-25177
    40. Sasi, N. K., Tiwari, K., Soon, F. F., Bonte, D., Wang, T., Melcher, K., Xu, H. E., and Weinreich, M. (2014) The Potent Cdc7-Dbf4 (DDK) Kinase Inhibitor XL413 Has Limited Activity in Many Cancer Cell Lines and Discovery of Potential New DDK Inhibitor Scaffolds. PloS one 9, e113300
    41. Swords, R., Mahalingam, D., O’Dwyer, M., Santocanale, C., Kelly, K., Carew, J., and Giles, F. (2010) Cdc7 kinase – A new target for drug development. European Journal of Cancer 46, 33-40
    42. Horejsi, Z., Collis, S. J., and Boulton, S. J. (2009) FANCM-FAAP24 and HCLK2: roles in ATR signalling and the Fanconi anemia pathway. Cell cycle (Georgetown, Tex.) 8, 1133-1137
    43. Takai, H., Xie, Y., de Lange, T., and Pavletich, N. P. (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24, 2019-2030
    44. Hurov, K. E., Cotta-Ramusino, C., and Elledge, S. J. (2010) A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev 24, 1939-1950
    45. Ha, K., Fiskus, W., Rao, R., Balusu, R., Venkannagari, S., Nalabothula, N. R., and Bhalla, K. N. (2011) Hsp90 Inhibitor–Mediated Disruption of Chaperone Association of ATR with Hsp90 Sensitizes Cancer Cells to DNA Damage. Molecular Cancer Therapeutics 10, 1194-1206
    46. Collis, S. J., Barber, L. J., Clark, A. J., Martin, J. S., Ward, J. D., and Boulton, S. J. (2007) HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol 9, 391-401
    47. Collis, S. J., Ciccia, A., Deans, A. J., Horejsi, Z., Martin, J. S., Maslen, S. L., Skehel, J. M., Elledge, S. J., West, S. C., and Boulton, S. J. (2008) FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 32, 313-324
    48. Horejsi, Z., Takai, H., Adelman, C. A., Collis, S. J., Flynn, H., Maslen, S., Skehel, J. M., de Lange, T., and Boulton, S. J. (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39, 839-850
    49. Arlander, S. J., Felts, S. J., Wagner, J. M., Stensgard, B., Toft, D. O., and Karnitz, L. M. (2006) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281, 2989-2998
    50. Sekimoto, T., Oda, T., Pozo, F. M., Murakumo, Y., Masutani, C., Hanaoka, F., and Yamashita, T. (2010) The Molecular Chaperone Hsp90 Regulates Accumulation of DNA Polymerase η at Replication Stalling Sites in UV-Irradiated Cells. Molecular Cell 37, 79-89
    51. He, T.-C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. PNAS 95, 2509-2514
    52. Vaziri, C., Saxena, S., Jeon, Y., Lee, C., Murata, K., Machida, Y., Wagle, N., Hwang, D. S., and Dutta, A. (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11, 997-1008
    53. Wang, H. M., Cheng, K. C., Lin, C. J., Hsu, S. W., Fang, W. C., Hsu, T. F., Chiu, C. C., Chang, H. W., Hsu, C. H., and Lee, A. Y. (2010) Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101, 2612-2620
    54. Chen, L., Nievera, C. J., Lee, A. Y., and Wu, X. (2008) Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283, 7713-7720
    55. Pierce, A. J., Johnson, R. D., Thompson, L. H., and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13, 2633-2638
    56. Liu, E., Lee, A. Y., Chiba, T., Olson, E., Sun, P., and Wu, X. (2007) The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. J Cell Biol 179, 643-657
    57. Cheng, A. N., Jiang, S. S., Fan, C.-C., Lo, Y.-K., Kuo, C.-Y., Chen, C.-H., Liu, Y.-L., Lee, C.-C., Chen, W.-S., Huang, T.-S., Wang, T.-Y., and Lee, A. Y.-L. (2013) Increased Cdc7 expression is a marker of oral squamous cell carcinoma and overexpression of Cdc7 contributes to the resistance to DNA-damaging agents. Cancer Letters 337, 218-225
    58. Igney, F. H., and Krammer, P. H. (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2, 277-288
    59. Guo, B., Romero, J., Kim, B. J., and Lee, H. (2005) High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression. Eur J Cell Biol 84, 927-938
    60. Lee, A. Y., Chiba, T., Truong, L. N., Cheng, A. N., Do, J., Cho, M. J., Chen, L., and Wu, X. (2012) Dbf4 Is Direct Downstream Target of Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3-related (ATR) Protein to Regulate Intra-S-phase Checkpoint. J Biol Chem 287, 2531-2543
    61. Saintigny, Y., Delacote, F., Vares, G., Petitot, F., Lambert, S., Averbeck, D., and Lopez, B. S. (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20, 3861-3870
    62. Kulkarni, A. A., Kingsbury, S. R., Tudzarova, S., Hong, H. K., Loddo, M., Rashid, M., Rodriguez-Acebes, S., Prevost, A. T., Ledermann, J. A., Stoeber, K., and Williams, G. H. (2009) Cdc7 kinase is a predictor of survival and a novel therapeutic target in epithelial ovarian carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 2417-2425
    63. Choschzick, M., Lebeau, A., Marx, A. H., Tharun, L., Terracciano, L., Heilenkotter, U., Jaenicke, F., Bokemeyer, C., Simon, R., Sauter, G., and Schwarz, J. (2010) Overexpression of cell division cycle 7 homolog is associated with gene amplification frequency in breast cancer. Hum Pathol 41, 358-365
    64. Stead, B. E., Brandl, C. J., Sandre, M. K., and Davey, M. J. (2012) Mcm2 phosphorylation and the response to replicative stress. BMC genetics 13, 36
    65. McClellan, A. J., Xia, Y., Deutschbauer, A. M., Davis, R. W., Gerstein, M., and Frydman, J. (2007) Diverse Cellular Functions of the Hsp90 Molecular Chaperone Uncovered Using Systems Approaches. Cell 131, 121-135
    66. Stecklein, S. R., Kumaraswamy, E., Behbod, F., Wang, W., Chaguturu, V., Harlan-Williams, L. M., and Jensen, R. A. (2012) BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci U S A 109, 13650-13655
    67. DeZwaan, D. C., and Freeman, B. C. (2010) HSP90 manages the ends. Trends in biochemical sciences 35, 384-391
    68. Dote, H., Burgan, W. E., Camphausen, K., and Tofilon, P. J. (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer research 66, 9211-9220
    69. Taipale, M., Jarosz, D. F., and Lindquist, S. (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11, 515-528
    70. Mollapour, M., and Neckers, L. (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823, 648-655
    71. Cho, W. H., Lee, Y. J., Kong, S. I., Hurwitz, J., and Lee, J. K. (2006) CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A 103, 11521-11526
    72. Sheu, Y.-J., and Stillman, B. (2006) Cdc7-Dbf4 Phosphorylates MCM Proteins via a Docking Site-Mediated Mechanism to Promote S Phase Progression. Molecular Cell 24, 101-113
    73. Mollapour, M., Tsutsumi, S., Truman, A. W., Xu, W., Vaughan, C. K., Beebe, K., Konstantinova, A., Vourganti, S., Panaretou, B., Piper, P. W., Trepel, J. B., Prodromou, C., Pearl, L. H., and Neckers, L. (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41, 672-681
    74. Chen, G., Bradford, W. D., Seidel, C. W., and Li, R. (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482, 246-250
    75. Quanz, M., Herbette, A., Sayarath, M., de Koning, L., Dubois, T., Sun, J. S., and Dutreix, M. (2012) Heat shock protein 90alpha (Hsp90alpha) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 287, 8803-8815
    76. Takeda, T., Ogino, K., Matsui, E., Cho, M. K., Kumagai, H., Miyake, T., Arai, K., and Masai, H. (1999) A fission yeast gene, him1(+)/dfp1(+), encoding a regulatory subunit for Hsk1 kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol Cell Biol 19, 5535-5547
    77. Jones, D. R., Prasad, A. A., Chan, P. K., and Duncker, B. P. (2010) The Dbf4 motif C zinc finger promotes DNA replication and mediates resistance to genotoxic stress. Cell cycle (Georgetown, Tex.) 9, 2018-2026
    78. Petermann, E., Woodcock, M., and Helleday, T. (2010) Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci U S A 107, 16090-16095
    79. Matsumoto, S., Shimmoto, M., Kakusho, N., Yokoyama, M., Kanoh, Y., Hayano, M., Russell, P., and Masai, H. (2010) Hsk1 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission yeast. Cell Cycle 9, 4627-4637
    80. Hanada, K., Budzowska, M., Davies, S. L., van Drunen, E., Onizawa, H., Beverloo, H. B., Maas, A., Essers, J., Hickson, I. D., and Kanaar, R. (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nature structural & molecular biology 14, 1096-1104
    81. Bryant, H. E., Petermann, E., Schultz, N., Jemth, A. S., Loseva, O., Issaeva, N., Johansson, F., Fernandez, S., McGlynn, P., and Helleday, T. (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28, 2601-2615
    82. Furuya, K., Miyabe, I., Tsutsui, Y., Paderi, F., Kakusho, N., Masai, H., Niki, H., and Carr, A. M. (2010) DDK phosphorylates checkpoint clamp component Rad9 and promotes its release from damaged chromatin. Mol Cell 40, 606-618
    83. Trenz, K., Errico, A., and Costanzo, V. (2008) Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO Journal 27, 876-885
    84. Day, T. A., Palle, K., Barkley, L. R., Kakusho, N., Zou, Y., Tateishi, S., Verreault, A., Masai, H., and Vaziri, C. (2010) Phosphorylated Rad 18 directs DNA Polymerase {eta} to sites of stalled replication. J Cell Biol 191, 953-966
    85. Trepel, J., Mollapour, M., Giaccone, G., and Neckers, L. (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10, 537-549
    86. Chae, Young C., Caino, M. C., Lisanti, S., Ghosh, Jagadish C., Dohi, T., Danial, Nika N., Villanueva, J., Ferrero, S., Vaira, V., Santambrogio, L., Bosari, S., Languino, Lucia R., Herlyn, M., and Altieri, Dario C. Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s. Cancer Cell 22, 331-344
    87. Gaspar, N., Sharp, S. Y., Pacey, S., Jones, C., Walton, M., Vassal, G., Eccles, S., Pearson, A., and Workman, P. (2009) Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer research 69, 1966-1975
    88. Piper, P. W., and Millson, S. H. (2011) Mechanisms of Resistance to Hsp90 Inhibitor Drugs: A Complex Mosaic Emerges. Pharmaceuticals 4, 1400-1422

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE