簡易檢索 / 詳目顯示

研究生: 吳政旻
Wu, Cheng-Min
論文名稱: 應用溫度感測螢光技術探討定熱通量下矩形微直管流體與壁面熱傳特性
The application of molecule-based temperature sensors for surface and fluid temperature measurement inside rectangular microchannel under constant heat flux boundary condition
指導教授: 黃智永
Huang, Chih-Yung
劉通敏
Liou, Tong-Miin
口試委員: 高騏
楊建裕
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 矩形微流道低Re溫度感測分子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在以實驗方法探討矩形微流道內部低Re條件下流場的熱傳行為。實驗利用溫度感測分子調配成溫度感測溶液與溫度感測塗料並使用傳統尺度流道的進行螢光溫度量測技術驗證,同時應用於微流體溶液中進行流體平均溫度與流道壁面溫度量測以及熱傳分析。此量測方法屬於非侵入式的光學量測方式,具有高精密度與高空間解析度等優點。由於微流道體積較小,難以架設溫度感測器,因此溫度感測分子技術適合應用在量測微流道內的溫度分佈。微流道以標準黃光製程製作出梳狀微流道母模結構,再以聚二甲基矽烷(PDMS)翻模出微流道,微流道尺寸長40 mm,寬與高分別為200 μm至900 μm以及22 μm至110 μm不等,水力直徑變化從40 μm至196 μm,深寬比維持0.1,Re範圍從15至80。
    使用溫度感測分子可大幅提高空間解析度最高可達15μm/pixel , 資料點 2656個;而溫度解析度,可達0.8 ℃。溫度量測結果發現,壁面與流體溫度成長的趨勢已與巨觀尺度的線性變化不盡相同,而呈現曲線的變化。經分析後發現在微流道內,由於特徵尺度的縮小導致流場Re降低,會增加軸向熱傳的影響。當Re越低,管道中溶液溫度變化的曲率也越大;同時,因軸向熱傳的影響增強入口加熱的效應,在入口區域的溫度梯度會上升。而當水力直徑變小時,也會增加軸向熱傳的影響,也使得有相同的現象發生。在本研究中進行的實驗條件下,熱完全發展區的Nu值約為2.56,Gz-1/2約為0.48,與前人定壁溫條件下微流道熱傳分析所量測Nu值為2.24相比較高。此趨勢與傳統尺度下或微尺度下的熱傳分析一致。


    摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 符號說明 XV 第一章、 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.2.1 單相流體熱傳回顧 4 1.2.2 溫度感測分子發展 15 1.3 研究目的 18 1.4 論文架構 19 第二章、 實驗原理 20 2.1 螢光溫度感測原理 20 2.2 微直管流道單壁定熱通量熱傳原理 25 第三章、 實驗方法 28 3.1 微流道製作 28 3.2 螢光溫度感測分子研究 32 3.2.1 螢光溫度感測分子配置過程 32 3.2.2 溫度校正儀器架設 37 3.2.3 螢光溫度感測溶液溫度校正曲線 40 3.2.4 螢光溫度感測塗料校正曲線 46 3.2.5 溫度感測溶液/塗料 校正公式 52 第四章、 傳統尺度熱傳分析 55 4.1 實驗架設 55 第五章、 微米尺度熱傳分析 62 5.1 矩形直管微流道溫度量測實驗配置 62 5.2 熱損計算 67 5.2.1 熱損控制 67 5.2.2 熱損計算 70 5.3 微尺度單壁面定熱通量實驗結果討論 72 5.3.1 相同微流道系統在不同Re實驗結果 72 5.3.2 Re固定、水力直徑下降對流場影響 88 第六章、 影像處理與誤差分析 93 6.1 影像處理 93 6.2 逐點影像校正 95 6.3 誤差分析 100 第七章、 結論與未來工作建議 106 7.1 結論 106 7.2 未來工作建議 108 附錄A 109 參考文獻 114 Vita 118

    [1] S. Hardt, K. Drese, and V. Hessel, "Passive micromixers for applications in the microreactor and μTAS fields," Microfluidics and Nanofluidics, vol. 1, pp. 108-118, 2005/05/01 2005.
    [2] F. Jiang, K. S. Drese, S. Hardt, M. Küpper, and F. Schönfeld, "Helical flows and chaotic mixing in curved micro channels," AIChE Journal, vol. 50, pp. 2297-2305, 2004.
    [3] A. L. London and R. K. Shah, Laminar Flow Forced Convection in Ducts.: Academic Press, 1978.
    [4] R. K. Shah and M. S. Bhatti, Handbook of Single-Phase Convective Heat Transfer.: JOHN WILEY& SONS, 1987.
    [5] F. W. Schmidt, " Personal Communication " in Mech. Eng. Dep., Pennsylvania State University, University Park. ed. University Park.: Pennsylvania State 1971.
    [6] G. Maranzana, I. Perry, and D. Maillet, "Mini- and micro-channels: influence of axial conduction in the walls," International Journal of Heat and Mass Transfer, vol. 47, pp. 3993-4004, 2004.
    [7] G. P. Celataa, M. Cumob, V. Marconia, S. J. McPhaila, and G. Zummoa, "Microtube liquid single-phase heat transfer in laminar flow," International Journal of Heat and Mass Transfer, vol. 49, pp. 3538-3546, 2006.
    [8] M. K. Moharana, G. Agarwal, and S. Khandekar, "Axial conduction in single-phase simultaneously developing flow in a rectangular mini-channel array," International Journal of Thermal Sciences, vol. 50, pp. 1001-1012, 2011.
    [9] G. Gamrata, M. F. Marinetb, and D. Asendrycha, "Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, vol. 48, pp. 2943-2954, 2005.
    [10] G. L. Morini, "Single-phase convective heat transfer in microchannels: a review of experimental results," International Journal of Thermal Sciences, vol. 43, pp. 631-651, 2004.
    [11] M. M. Rahman, "Measurements of heat transfer in microchannel heat sinks," International Communications in Heat and Mass Transfer, vol. 27, pp. 495-506, 2000.
    [12] T. M. Harms, M. J. Kazmierczak, and F. M. Gerner, "Developing convective heat transfer in deep rectangular microchannels," International Journal of Heat and Fluid Flow, vol. 20, pp. 149-157, 1999.
    [13] X. F. Peng and G. P. Peterson, "Convective heat transfer and flow friction for water flow in microchannel structures," International Journal of Heat and Mass Transfer, vol. 39, pp. 2599-2608, 1996.
    [14] S. Kandlikar, S. .Garimella, D. Li, S. Colin, and M. R. King, Heat Transfer And Fluid Flow in Minichannels And Microchannels: Elsevier Science, 2006.
    [15] C. W. Liu and C. Gau, "Design consideration and fabrication of a microchannel system containing a set of heaters and an array of temperature sensors," Sensors and Actuators A: Physical, vol. 122, pp. 177-183, 2005.
    [16] C. Y. Yang and T. Y. Lin, "Heat transfer characteristics of water flow in microtubes," Experimental Thermal and Fluid Science, vol. 32, pp. 432-439, 2007.
    [17] G. M. Mala, D. Li, C. Werner, H. J. Jacobasch, and Y. B. Ning, "Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects," International Journal of Heat and Fluid Flow, vol. 18, pp. 489-496, 1997.
    [18] C. Yang, D. Li, and J. H. Masliyah, "Modeling forced liquid convection in rectangular microchannels with electrokinetic effects," International Journal of Heat and Mass Transfer, vol. 41, pp. 4229-4249, 1998.
    [19] L. Ren, W. Qu, and D. Li, "Interfacial electrokinetic effects on liquid flow in microchannels," International Journal of Heat and Mass Transfer, vol. 44, pp. 3125-3134, 2001.
    [20] J. Y. Jung and H. Y. Kwak, "Fluid flow and heat transfer in microchannels with rectangular cross section," Heat and Mass Transfer, vol. 44, pp. 1041-1049, 2008/07/01 2008.
    [21] P. X. Jiang, M. H. Fan, G. S. Si, and Z. P. Ren, "Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers," International Journal of Heat and Mass Transfer, vol. 44, pp. 1039-1051, 2001.
    [22] T. Liu and J. P. Sullivan, Pressure and Temperature Sensitive Paints: Springer, 2005.
    [23] J. J. Lee, J. C. Dutton, and A. M. Jacobi, "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications," Journal of Mechanical Science and Technology, vol. 21, pp. 1253-1262, 2007.
    [24] C. Y. Huang, H. Sakaue, J. W. Gregory, and J. P. Sullivan, "Molecular Sensors for MEMS," presented at the 40th Aerospace Sciences Meeting & Exhibit (Reno, NV.). 2002.
    [25] C. Y. Huang, J. W. Gregory, H. Nagai, K. Asai, and J. P. Sullivan, "Molecular sensors in microturbine measurement," presented at the ASME International Mechanical Engineering Congress and Exposition., 2006.
    [26] C. A. Li, "The Study of Fluid Flow and Heat Transfer inside Rectangular PDMS Microchannels " Master, Dept. of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2011.
    [27] S. Someya, Y. Li, K. Ishii, and K. Okamoto, "Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive articles," Experiments in Fluids, vol. 50, pp. 65-73, 2011.
    [28] J. J. Shah, M. Gaitan, and J. Geist, "Generalized Temperature Measurement Equations for Rhodamine B Dye Solution and Its Application to Microfluidics," Analytical Chemistry, vol. 81, pp. 8260-8263, 2009/10/01 2009.
    [29] D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye," Analytical Chemistry, vol. 73, pp. 4117-4123, 2001/09/01 2001.
    [30] R. Fu, B. Xu, and D. Li, "Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye," International Journal of Thermal Sciences, vol. 45, pp. 841-847, 2006.
    [31] V. K. Natrajan and K. T. Christensen, "Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow," Experiments in Fluids, vol. 49, pp. 1021-1037, 2010.
    [32] S. S. Hsieh and C. Y. Lin, "Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces," International Journal of Heat and Mass Transfer, vol. 52, pp. 260-270, 2009.
    [33] D. C. Tretheway and C. D. Meinhart, "A generating mechanism for apparent fluid slip in hydrophobic microchannels," Physics of Fluids, vol. 16, p. 7, 2004.
    [34] M. Stobiecka and M. Hepel, "Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles," Physical Chemistry Chemical Physics, vol. 13, pp. 1131-1139, 2011.
    [35] A.Bejan, Convection Heat Transfer, Third ed.: Willy, 1993.
    [36] A. R. Betz and D. Attinger, "Can segmented flow enhance heat transfer in microchannel heat sinks?," International Journal of Heat and Mass Transfer, vol. 53, pp. 3683-3691, 2010.
    [37] Z. Li, W. Q. Tao, and Y. L. He, "A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section," International Journal of Thermal Sciences, vol. 45, pp. 1140-1148, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE