簡易檢索 / 詳目顯示

研究生: 王信雄
Hsin-Hsiung Wang
論文名稱: 微小氣泡於軸對稱圓管內上升運動之研究
指導教授: 李雄略
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 49
中文關鍵詞: 微小氣泡氣泡上升曲率表面張力
外文關鍵詞: micro bubble, curvature, surface tension, NAPPLE, weighting function scheme
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業上許多製程在進行微小氣泡分析時,都需具明確自由液面位置的氣泡資料,但要得到這些資料目前已被證實相當的困難,造成此困難的原因大致上有兩個,(1)大部分的數值方法若需要準確的自由液面位置來進行計算,經常利用模糊(smearing)邊界的方法來避開因物理性質不連續而難以計算的問題,但此法常導致自由液面處的資料存在不合理之值,(2)流場所需要的表面張力必須由變形後的自由液面來求得,但曲率是二次微分的高階函數,若以形狀來求得曲率會引入過多的雜訊而導致無法計算。目前的數值方法雖然利用了不同的技巧來模擬微小氣泡行為,但對於以上所提出的兩個難點仍無法完善的解決。

    本文採用簡單的數值方法,不需模糊自由液面就可以直接進行計算,並利用自由液面不會被流體穿越的特性來求得正確的曲率。相較於目前大部分的研究著重於自由液面邊界的處理方式,本文提出了不同的思考方向,改以直接修正由表面張力所導入的壓力差,希望能解決此類問題的困難之處。


    目錄 目錄 Ⅰ 圖目錄 Ⅲ 符號說明 Ⅳ 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 1.3目的 4 第二章 理論分析 5 2.1問題描述 5 2.2統御方程式 5 2.3自由液面處的力平衡 7 2.4邊界條件 11 第三章 數值方法 12 3.1單相區統御方程式之差分 13 3.2跨相區統御方程式之差分 15 3.3利用NAPPLE求解單相壓力場 16 3.4利用NAPPLE求解跨相壓力場 18 3.5自由液面處的壓力及終端速度 20 3.6自由液面處的壓力梯度 21 3.7計算流程 22 3.8收斂準則 23 第四章 結果與討論 25 4.1壓力差修正前後的流場分析 26 4.2曲率的變化 28 4.3終端速度比較 28 第五章 結論 31 參考文獻 32 圖目錄 圖2-1題目尺寸關係與模擬示意圖 37 圖3-1網格設定示意圖 38 圖3-2 NAPPLE網格示意圖( r-z平面) 39 圖3-3 NAPPLE網格跨相處示意圖 40 圖4-1(a) 氣泡表面壓力未收斂之流場 41 圖4-1(b) 氣泡表面壓力未收斂之壓力場 42 圖4-1(c) 氣泡表面壓力未收斂之法線速度分佈 43 圖4-2(a) 氣泡表面壓力已收斂之流場 44 圖4-2(b) 氣泡表面壓力已收斂之壓力場 45 圖4-3 氣泡表面流動壓力分佈 46 圖4-4 氣泡與形狀相似的橢圓曲率比較 47 圖4-5 終端速度與氣泡大小之關係圖 48 圖4-6 氣泡與形狀相似的橢圓曲率比較 49

    [1] Duineveld, P. C., 1995, “The rise velocity and shape of bubbles in pure water at high Reynolds number,” Journal of Fluid Mech., Vol. 292, pp. 325-332.
    [2] Zun, I., 1980, “The transverse migration of bubbles influenced by wall in vertical bubbly flow,” Int. Journal of Multiphase Flow, Vol. 6, pp. 583-588.
    [3] Wu, M., Gharib, M., 2002, “Experimental studies on the shape and path of small air bubbles rising in clean water,” Physics of Fluids, Vol. 14, pp. 49-52.
    [4] Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, 1999, “Wall effects on the rise of single gas bubbles in liquids,” Int. Comm. Heat Mass Transfer, Vol. 26, pp. 781-790.
    [5] Hirt, C. W., Nichols, B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of free Boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225.
    [6] Unverdi, SO., Tryggvason, G., 1992, “A front-tracking method for viscous, incompressible multi-fluid flows,” Journal of Computational Physics, Vol. 100, pp. 25-37.
    [7] Tryggvasson, G., Bunner, B., Esmaeeli, A., 2001, “A front tracking method for the computations of multiphase flow,” Journal of Computational Physics, Vol. 169, pp. 708-759.
    [8] Van Sint Annaland, M., Dijkhuizen, W., Deen, N. G., Kuipers, J. A. M., 2006, “Numerical Simulation of Behavior of Gas Bubbles Using a 3-D Front-Tracking Method,” AICHE Journal, Vol. 52, No. 1, pp. 99-110.
    [9] Sussman, M., Smereka, P., Osher, S., 1994, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, Vol. 114, pp. 146-159.
    [10] Sussman, M., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., Welcome, M. L., 1999, “An adaptive level set approach for incompressible two-phase flows,” Journal of Computational Physics, Vol. 148, pp. 81-124.
    [11] Sethian, J. A., 1996, “Level Set Methods,” Cambridge, UK, Cambridge University Press.
    [12] Chang, Y. C., Hou T. Y., Merriman, B., Osher, S., 1996, “A level set formulation of Eulerian interface capturing methods for incompressible fluid flows,” Journal of Computational Physics, Vol. 124, pp. 449-464.
    [13] Sussman, M., Smereka, P., 1997, “Axi-symmetric free boundary problems,” Journal of Fluid Mech., Vol. 341, pp. 269-294.
    [14] Sussman, M., Fatemi, E., 1999, “An efficient interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,” SIAM Journal of Science Computing, Vol. 20, pp. 1165-1191.
    [15] Fedkiw, R. P., Osher, S., 2001, “Level-set methods: An overview and some recent results,” Journal of Computational Physics, Vol. 169, pp. 463-502.
    [16] Sussman, M., Puckett, E. G., 2000, “A Coupled Level Set and Volume-of Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows,” Journal of Computational Physics, Vol. 162, pp. 301-337.
    [17] Ye, T., Shyy, W., Chung, J. N., 2001, “A fixed-grid, sharp-interface method for bubble dynamics and phase change,” Journal of Computational Physics, Vol. 174, pp.781- 815.
    [18] Sapidis, N., Farin, G., 1990, “Automatic fairing algorithm for B-spline curves,” Computer-Aided Design, Vol. 22, No. 2, pp. 121-129.
    [19] Boehm, W., 1980, “Inserting new knots into B-spline curves,” Computer-Aided Design, Vol. 12, No. 4, pp. 199-201.
    [20] Poliakoff, J. F., Wong, Y. K., Thomas, P. D., 1999, “An automated curve fairing algorithm for cubic B-spline curves,” Journal of Computational and Applied Mathematics, Vol. 102, pp. 73-85.
    [21] Zhang, C., Zhang, P., Cheng, F., 2001, “Fairing spline curves and surfaces by minimizing energy,” Computer-Aided Design, Vol. 33, pp. 913-923.
    [22] Li, W., Xu, S., Zheng, J., Zhao, G., 2004, “Target curvature driven fairing algorithm for planar cubic B-spline curves,” Computer-Aided Design, Vol. 21, pp. 499-513.
    [23] Fairn, G., 2001, “Curves and Surface for Computer-Aided Geometric Design, A Practical Guide”, 5th ed., Morgan Kaufmann, San Francisco.
    [24] M. E. Mortenson, 2006, “Geometric Modeling,” 3rd ed., Industrial Press.
    [25] Zheng, H. W., Shu, C., Chew, Y. T., 2006, “A lattice Boltzmann model for multiphase flow with large density ratio,” Journal of Computational Physics, to be published.
    [26] Chang, Y. Z. 2005, “On the rising of a tiny Bubble in a small vertical square tube,” Master Degree thesis (National Tsing-Hua University, Taiwan).
    [27] Moore, D. W., 1963, “The Boundary Layer on a Spherical Gas Bubble,” Journal of Fluid Mechanics, Vol. 16, pp. 161-176.
    [28] Sarpkaya, T., 1996, “Vorticity, free surface and surfactants,” Annual Review of Fluid Mechanics, Vol. 28, pp. 83-128.
    [29] Blackmore, D., Ting, L., 1985, “Surface integral of its mean curvature vector,” SIAM (Society for Industrial and Applied Mathematics) Review, Vol. 27, No. 4, pp. 569-572.
    [30] Lee, S. L., 1989, “Weighting function scheme and its application on multidimensional conservation,” International Journal of Heat and Mass Transfer, Vol. 32, pp. 2065-2073.
    [31] Lee, S. L., and Tzong, R. Y., 1992, “Artificial pressure for pressure-linked equation,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 2705-2716.
    [32] Lee, S. L., and Tzong, R. Y., 1991, “An enthalpy formulation for phase change problems with large thermal diffusivity jump across the interface,”International Journal of Heat and Mass Transfer, Vol. 35, pp. 1491-1502.
    [33] Lee, S. L., 1989, “A strongly-implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer, Vol. 16, pp. 161-178.
    [34] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 1992, “Numerical Recipes in FORTRAN”, 2nd ed., Cambridge University Press, pp. 179-180.
    [35] White, Frank M., 1991, “Viscous Fluid Flow”, 2nd ed., McGraw-Hill, New York, pp. 183-184.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE