研究生: |
王信雄 Hsin-Hsiung Wang |
---|---|
論文名稱: |
微小氣泡於軸對稱圓管內上升運動之研究 |
指導教授: | 李雄略 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 微小氣泡 、氣泡上升 、曲率 、表面張力 |
外文關鍵詞: | micro bubble, curvature, surface tension, NAPPLE, weighting function scheme |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業上許多製程在進行微小氣泡分析時,都需具明確自由液面位置的氣泡資料,但要得到這些資料目前已被證實相當的困難,造成此困難的原因大致上有兩個,(1)大部分的數值方法若需要準確的自由液面位置來進行計算,經常利用模糊(smearing)邊界的方法來避開因物理性質不連續而難以計算的問題,但此法常導致自由液面處的資料存在不合理之值,(2)流場所需要的表面張力必須由變形後的自由液面來求得,但曲率是二次微分的高階函數,若以形狀來求得曲率會引入過多的雜訊而導致無法計算。目前的數值方法雖然利用了不同的技巧來模擬微小氣泡行為,但對於以上所提出的兩個難點仍無法完善的解決。
本文採用簡單的數值方法,不需模糊自由液面就可以直接進行計算,並利用自由液面不會被流體穿越的特性來求得正確的曲率。相較於目前大部分的研究著重於自由液面邊界的處理方式,本文提出了不同的思考方向,改以直接修正由表面張力所導入的壓力差,希望能解決此類問題的困難之處。
[1] Duineveld, P. C., 1995, “The rise velocity and shape of bubbles in pure water at high Reynolds number,” Journal of Fluid Mech., Vol. 292, pp. 325-332.
[2] Zun, I., 1980, “The transverse migration of bubbles influenced by wall in vertical bubbly flow,” Int. Journal of Multiphase Flow, Vol. 6, pp. 583-588.
[3] Wu, M., Gharib, M., 2002, “Experimental studies on the shape and path of small air bubbles rising in clean water,” Physics of Fluids, Vol. 14, pp. 49-52.
[4] Krishna, R., Urseanu, M.I., van Baten, J.M., Ellenberger, 1999, “Wall effects on the rise of single gas bubbles in liquids,” Int. Comm. Heat Mass Transfer, Vol. 26, pp. 781-790.
[5] Hirt, C. W., Nichols, B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of free Boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225.
[6] Unverdi, SO., Tryggvason, G., 1992, “A front-tracking method for viscous, incompressible multi-fluid flows,” Journal of Computational Physics, Vol. 100, pp. 25-37.
[7] Tryggvasson, G., Bunner, B., Esmaeeli, A., 2001, “A front tracking method for the computations of multiphase flow,” Journal of Computational Physics, Vol. 169, pp. 708-759.
[8] Van Sint Annaland, M., Dijkhuizen, W., Deen, N. G., Kuipers, J. A. M., 2006, “Numerical Simulation of Behavior of Gas Bubbles Using a 3-D Front-Tracking Method,” AICHE Journal, Vol. 52, No. 1, pp. 99-110.
[9] Sussman, M., Smereka, P., Osher, S., 1994, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, Vol. 114, pp. 146-159.
[10] Sussman, M., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., Welcome, M. L., 1999, “An adaptive level set approach for incompressible two-phase flows,” Journal of Computational Physics, Vol. 148, pp. 81-124.
[11] Sethian, J. A., 1996, “Level Set Methods,” Cambridge, UK, Cambridge University Press.
[12] Chang, Y. C., Hou T. Y., Merriman, B., Osher, S., 1996, “A level set formulation of Eulerian interface capturing methods for incompressible fluid flows,” Journal of Computational Physics, Vol. 124, pp. 449-464.
[13] Sussman, M., Smereka, P., 1997, “Axi-symmetric free boundary problems,” Journal of Fluid Mech., Vol. 341, pp. 269-294.
[14] Sussman, M., Fatemi, E., 1999, “An efficient interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow,” SIAM Journal of Science Computing, Vol. 20, pp. 1165-1191.
[15] Fedkiw, R. P., Osher, S., 2001, “Level-set methods: An overview and some recent results,” Journal of Computational Physics, Vol. 169, pp. 463-502.
[16] Sussman, M., Puckett, E. G., 2000, “A Coupled Level Set and Volume-of Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows,” Journal of Computational Physics, Vol. 162, pp. 301-337.
[17] Ye, T., Shyy, W., Chung, J. N., 2001, “A fixed-grid, sharp-interface method for bubble dynamics and phase change,” Journal of Computational Physics, Vol. 174, pp.781- 815.
[18] Sapidis, N., Farin, G., 1990, “Automatic fairing algorithm for B-spline curves,” Computer-Aided Design, Vol. 22, No. 2, pp. 121-129.
[19] Boehm, W., 1980, “Inserting new knots into B-spline curves,” Computer-Aided Design, Vol. 12, No. 4, pp. 199-201.
[20] Poliakoff, J. F., Wong, Y. K., Thomas, P. D., 1999, “An automated curve fairing algorithm for cubic B-spline curves,” Journal of Computational and Applied Mathematics, Vol. 102, pp. 73-85.
[21] Zhang, C., Zhang, P., Cheng, F., 2001, “Fairing spline curves and surfaces by minimizing energy,” Computer-Aided Design, Vol. 33, pp. 913-923.
[22] Li, W., Xu, S., Zheng, J., Zhao, G., 2004, “Target curvature driven fairing algorithm for planar cubic B-spline curves,” Computer-Aided Design, Vol. 21, pp. 499-513.
[23] Fairn, G., 2001, “Curves and Surface for Computer-Aided Geometric Design, A Practical Guide”, 5th ed., Morgan Kaufmann, San Francisco.
[24] M. E. Mortenson, 2006, “Geometric Modeling,” 3rd ed., Industrial Press.
[25] Zheng, H. W., Shu, C., Chew, Y. T., 2006, “A lattice Boltzmann model for multiphase flow with large density ratio,” Journal of Computational Physics, to be published.
[26] Chang, Y. Z. 2005, “On the rising of a tiny Bubble in a small vertical square tube,” Master Degree thesis (National Tsing-Hua University, Taiwan).
[27] Moore, D. W., 1963, “The Boundary Layer on a Spherical Gas Bubble,” Journal of Fluid Mechanics, Vol. 16, pp. 161-176.
[28] Sarpkaya, T., 1996, “Vorticity, free surface and surfactants,” Annual Review of Fluid Mechanics, Vol. 28, pp. 83-128.
[29] Blackmore, D., Ting, L., 1985, “Surface integral of its mean curvature vector,” SIAM (Society for Industrial and Applied Mathematics) Review, Vol. 27, No. 4, pp. 569-572.
[30] Lee, S. L., 1989, “Weighting function scheme and its application on multidimensional conservation,” International Journal of Heat and Mass Transfer, Vol. 32, pp. 2065-2073.
[31] Lee, S. L., and Tzong, R. Y., 1992, “Artificial pressure for pressure-linked equation,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 2705-2716.
[32] Lee, S. L., and Tzong, R. Y., 1991, “An enthalpy formulation for phase change problems with large thermal diffusivity jump across the interface,”International Journal of Heat and Mass Transfer, Vol. 35, pp. 1491-1502.
[33] Lee, S. L., 1989, “A strongly-implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer, Vol. 16, pp. 161-178.
[34] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 1992, “Numerical Recipes in FORTRAN”, 2nd ed., Cambridge University Press, pp. 179-180.
[35] White, Frank M., 1991, “Viscous Fluid Flow”, 2nd ed., McGraw-Hill, New York, pp. 183-184.