簡易檢索 / 詳目顯示

研究生: 張雅欣
Chang, Ya-Hsin
論文名稱: GA2CO: Peak Temperature Estimation of VLSI Circuits
GA2CO: 一種用於超大型積體電路最高溫度估算之研究
指導教授: 王俊堯
Wang, Chun-Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 29
中文關鍵詞: 溫度功率螞蟻演算法基因演算法
外文關鍵詞: thermal, power, ACO, GA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於超大型積體電路上晶片密度不斷地增加和元件尺寸不斷地縮小,持續升高的運作溫度成為一個重要的議題。高溫不但降低了晶片的功能性和可靠度,同時也造成昂貴的封裝花費,一顆晶片的最高溫度能達到多少成為晶片設計上的一個重要考量。因此,本論文試著找出晶片最高溫度的界限,並且提供製造出此高溫的測試向量。我們應用基因演算法和螞蟻演算法來達成尋找晶片最高溫度的目標,最後的實驗結果顯示在TSMC 0.18um 的製程下,相較於隨機處理,我們的方法對ISCAS'85組合電路和ISCAS'89循序電路分別得到39.03%和6.80%的高溫。


    With the continuing increase of chip density and the shrinkage of feature size of transistor in VLSI circuits, high temperature has become a concerned issue. High temperature not only decreases the reliability of chips, but also causes high package cost in order to cool down the system. For design consideration, one important issue related to temperature is how hot the chip may be. Thus, this paper investigates on the lower bound of peak temperature of a packaged chip and on the patterns that cause such bound. Two algorithms, Genetic Algorithm and Ant Colony Optimization, are applied for finding this lower bound of peak temperature. Experimental results show that the proposed approach obtains an average of 39.03% higher lower bound for ISCAS'85 combinational benchmarks and 6.80% for ISCAS'89 sequential benchmarks as compared to random approach under the TSMC 0.18um library.

    書頁名 i 中文摘要 ii Abstract iii Acknowledgements iv Contents v List of Tables vii List of Figures viii 1. Introduction 1 2. Preliminaries.4 2.1. Temperature accumulation 4 2.2. Power model 6 2.3. Thermal model 8 3. GA2CO for combinational circuits 10 3.1. Hotspot evaluation 10 3.2. Critical input extraction 11 3.3. Pattern generation 13 3.4. Overall algorithm 15 4. GA2CO for sequential circuits 17 5. Experimental results 21 6. Conclusions 27 References 27

    [1] A. H. Ajami, M. Pedram, and K. Banerjee, “Effects of non-uniform substrate temperature on the clock signal integrity in high performance designs,” in Proc. Custom Integrated Circuits Conf., pp. 233-236, 2001.

    [2] M. Cho and D. Z. Pan, “PEAKASO: Peak-Temperature Aware Scan-Vector Optimization,” in Proc. VLSI Test Symp., pp. 52-57, 2006.

    [3] S. Devadas, K. Keutzer, and J. White, “Estimation of Power Dissipation in CMOS Combinational Circuits Using Boolean Function Manipulation,” IEEE. Trans. Computer-Aided Design, pp. 373-383, March, 1992.

    [4] M. Dorigo and T. StÄutzle, “Ant Colony Optimization,” Cambridge, MA:MIT Press, 2004.

    [5] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” MA: Addison-Wesley, 1989.

    [6] M. S. Hsiao, E. M. Rudnick, J. H. Patel, “Peak power estimation of VLSI circuits: new peak power measures,” IEEE. Trans. Very Large Scale Integration Systems, pp. 435-439, Aug. 2000.

    [7] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusamy, “Compact Thermal Modeling for Temperature-Aware Design,” in Proc. Design Automation Conf., pp. 878-883, 2004.

    [8] P. Israsena and S. Summerfield, “Novel pattern-based power estimation tool with accurate glitch modeling,” in Proc. Int. Symp. Circuits and Systems, pp. 721-724, 2000.

    [9] Y. L. Liu, C. Y. Wang, Y. C. Chen, and Y. S. Chang, “A Novel ACO-based Pattern Generation for Peak Power Estimation in VLSI Circuits,” in Proc. Int. Symp. on Quality Electronic Design, pp. 317-323, 2009.

    [10] X. Lu and W. Shi, “Layout and Parasitic Information for ISCAS Circuits,” 2003. [Online] . Available: http://dropzone.tamu.edu/ xiang/iscas.html

    [11] S. Manne, A. Pardo, R. I. Bahar, G. D. Hachtel, F. Somenzi, E. Macii, and M. Poncino, “Computing the Maximum Power Cycles of a Sequential Circuit,” in Proc. Design Automation Conf., pp. 23-28, 1995.

    [12] M. Ozisik, “Boundary Value Problems of Heat Conduction,” Oxford, U.K.: Oxford Univ. Press, 1968.

    [13] M. Pedram, S. Nazarian, “Thermal modeling, analysis, and management in VLSI circuits: principles and methods,” in Proc. IEEE, pp. 1487-1501, 2006.

    [14] C. Small, “Shrinking Devices Put the Squeeze on System Packaging,” in EDN., pp. 41-46, Feb. 1994.

    [15] T. Wang and C. C. Chen, “3D Thermal-ADI: A linear-time chip level transient thermal simulator,” IEEE Trans. on Computer-Aided Design, pp. 1434-1445, Dec. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE