簡易檢索 / 詳目顯示

研究生: 武黎越凱
Vo, Le Viet Khai
論文名稱: 以鈣鈦礦/固態染料敏化電池及鈣鈦礦/矽晶電池為例之四端子疊層太陽電池之研究
A Study on 4-Terminal Tandem Solar Cells: Perovskite Cell/ Solid-State Dye Sensitized Cell and Perovskite Cell/Silicon Solar Cells
指導教授: 衛子健
Wei, Tzu-Chien
口試委員: 林姿瑩
Lin, Tzu-Ying
李坤穆
Lee, Kun-Mu
吳明忠
Wu, Ming-Chung
林彥多
Lin, Yan-Duo
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 107
中文關鍵詞: 鈣鈦礦太陽能電池固態染料敏化電池四端子疊層太陽電池矽晶電池
外文關鍵詞: Perovskite Solar Cell, Solid State Dye Sensitized Solar Cell, 4T Tandem Solar Cell, Silicon Solar Cell
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態染料敏化太陽能電池(ssDSSC)在串聯太陽能電池配置中相較於液體電解質電池具有顯著優勢。主要好處在於其增強的穩定性和耐用性,因為ssDSSC消除了液體電解質常見的漏液、蒸發和腐蝕問題。這種穩定性確保了更長的操作壽命和更一致的性能,這對於設計用於高效率和可靠性的串聯太陽能電池至關重要。此外,ssDSSC可以更容易地與其他光伏技術(如鈣鈦礦或矽太陽能電池)集成,以創造高效的串聯結構。固態的形式也使其能夠更好地堆疊和分層,而不會有電解質相關劣化的風險,使其成為先進串聯太陽能電池架構的理想選擇。
    本研究的第一部分涉及製造和表徵結合ssDSSC與鈣鈦礦太陽能電池(PSC)的4T串聯太陽能電池架構。選擇甲基銨鉛溴氯鈣鈦礦,因其高透明度和適度的近紫外光吸收能力。對各種染料化合物在ssDSSC上進行測試,以尋找高效的光伏設備。先進的製造技術確保了最佳的層沉積和界面工程,以實現結構中有效的電荷轉移。
    本研究的第二部分深入探討了結合半透明寬帶隙太陽能電池FAMACsPbIBr與矽太陽能電池的串聯結構的製造,並在不同強度的低光和T5螢光燈下檢查其性能。這將提供對在各種光照條件下運行的兩種串聯系統之間差異的更深入理解,突顯鈣鈦礦在串聯太陽能電池中的潛力,因為其可以製成半透明並且具可調帶隙特性。


    The primary benefit of solid-state dye-sensitized solar cells (ssDSSC) lies in their enhanced stability and durability, as ssDSSCs eliminate issues related to leakage, evaporation, and corrosion that are common with liquid electrolytes. This stability ensures longer operational lifespans and more consistent performance, which is crucial for tandem solar cells designed for high efficiency and reliability. Moreover, without using a sandwich design to seal the cell, ssDSSCs can further decrease the production cost and also minimize the optical loss for the whole system. Additionally, ssDSSCs can be more easily integrated with other photovoltaic technologies, such as perovskite or silicon solar cells, to create efficient tandem structures. Solid form also allows them to better stacking and layering without the risk of electrolyte-related degradation, making them an ideal choice for advanced tandem solar cell architectures.
    The first part of this research involves fabricating and characterizing 4T tandem solar cell architectures combining ssDSSCs with perovskite solar cells (PSCs). Methylammonium (MA) lead bromide chloride perovskite is chosen for its high transparency and adequate near-UV absorbance. Various dye compounds are tested on ssDSSCs to find an efficient photovoltaic device. Advanced fabrication techniques ensure optimal layer deposition and interface engineering for efficient charge transfer across the structure.
    The second part of this research delves into the fabrication of a tandem structure combining semi-transparent wide band gap solar cell FAMACsPbIBr and silicon solar cell, and examines their performance under low light and T5 fluorescent light at different intensities. This would provide a deeper understanding of the differences between the two tandem systems operating under various light conditions, highlighting the potential of perovskite in tandem solar cells due to its ability to be made semi-transparent and its tunable band gap characteristics.

    Acknowledgment i Abstract ii 摘要 iii Table of Contents iv Content of Figures vii Content of Tables xi Chapter 1 Introduction 1 1.1 Impact of the fossil fuels on world climate since the Industrial Revolution 1 1.2 Perception on renewable energy and solar electricity 4 1.3 Tandem solar cells 9 Chapter 2 Literature Review 15 2.1 Perovskite solar cells (PSC) 15 2.1.1 Different device architectures of PSCs 16 2.1.2 Working mechanism of PSCs 19 2.1.3 TCO Electrodes 20 2.1.4 Advantages of PSC in TSC 20 2.2 Paper review PSC-based TSC 22 2.2.1 PSC/DSSC 4T TSC 22 2.2.2 PSC/Si 4T TSC 24 2.2.3 PSC/CIGS 4T TSC 27 2.2.4 All PSC 4T TSC 28 2.3 Motivation for the project 29 Chapter 3 Experiment 32 3.1 Materials and chemicals 32 3.2 Instrument and methodology 35 3.2.1 Instrument list 35 3.2.2 Characterizations 36 3.3 Experimental section 44 3.3.1 Fabrication of ssDSSC 44 3.3.2 Fabrication of PSC 47 Chapter 4 PSC/ssDSSC 4T Tandem Solar Cell 51 4.1 ssDSSC device optimization 51 4.1.1 Impact of compact layer made by different methods 51 4.1.2 Optimization on dye soaking time 58 4.1.3 Different dyes 61 4.2 Characterization of transparent PSC 63 4.3 MAPbBrCl2/Y123 tandem solar cell characterization 67 4.4 MAPbBr3/Y123 tandem solar cell characterization 74 4.5 Y123/FAMACsPbIBr tandem solar cell 83 Chapter 5 High Efficiency WBG Perovskite/ Silicon TSC 85 5.1 Wide Bandgap Perovskite Devices 85 5.1.1 Control devices with Au counter electrode 85 5.1.2 AZO transparent back electrode devices characterization 86 5.2 FAMACsPbIBr/Silicon Tandem Solar Cell Characterization 88 5.3 Device characterization under AM1.5 and T5 90 Chapter 6 Conclusion 95 References 97

    [1] World Meteorological Organization, July 2023 is set to be the hottest month on record, (2023). https://public.wmo.int/en/media/press-release/july-2023-set-be-hottest-month-record.
    [2] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.N. Thépaut, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc. 146 (2020) 1999–2049. https://doi.org/10.1002/qj.3803.
    [3] Copernicus, How close are we to reaching a global warming of 1.5°C?, Clim. Chang. Serv. (2021) 2023. https://climate.copernicus.eu/how-close-are-we-reaching-global-warming-15degc.
    [4] C.P. Morice, J.J. Kennedy, N.A. Rayner, P.D. Jones, Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res. Atmos. 117 (2012) 1–22. https://doi.org/10.1029/2011JD017187.
    [5] Global Carbon Project, Briefing on key messages Global Carbon Budget 2022, 11 (2022) 4811–4900.
    [6] National Development Council, Taiwan’s Pathway to Net-Zero Emissions in 2050, (2022). https://www.ndc.gov.tw/en/Content_List.aspx?n=B154724D802DC488.
    [7] P. Taylor, M.M. Kostic, Energy : Global and Historical Background Energy : Global and Historical Background, Encycl. Energy Eng. (2008) 1–15. https://doi.org/10.1081/E-EEE-120042341.
    [8] Taiwan Power Company, 電價成本, (2023). https://www.taipower.com.tw/tc/page.aspx?mid=196&cid=4234&cchk=f2a96850-f33e-4d23-b630-8fee00cd1a76.
    [9] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519. https://doi.org/10.1063/1.1736034.
    [10] H. Li, W. Zhang, Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment, Chem. Rev. 120 (2020) 9835–9950. https://doi.org/10.1021/acs.chemrev.9b00780.
    [11] S. Akhil, S. Akash, A. Pasha, B. Kulkarni, M. Jalalah, M. Alsaiari, F.A. Harraz, R.G. Balakrishna, Review on perovskite silicon tandem solar cells: Status and prospects 2T, 3T and 4T for real world conditions, Mater. Des. 211 (2021) 110138. https://doi.org/10.1016/j.matdes.2021.110138.
    [12] T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors, Nat. Energy 3 (2018) 828–838. https://doi.org/10.1038/s41560-018-0190-4.
    [13] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051. https://doi.org/10.1021/ja809598r.
    [14] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science (80-. ). 338 (2012) 643–647. https://doi.org/10.1126/science.1228604.
    [15] D. Feldman, R. Fu, R. Margolis, M. Woodhouse, K. Ardani, R. Fu, D. Feldman, R. Margolis, M. Woodhouse, K. Ardani, U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020, Technical Report NREL/TP-6A20-77324, Natl. Renew. Energy Lab. (2021) 1–120.
    [16] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide Perovskite Photovoltaics: Background, Status, and Future Prospects, Chem. Rev. 119 (2019) 3036–3103. https://doi.org/10.1021/acs.chemrev.8b00539.
    [17] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 °c processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci. 7 (2014) 1142–1147. https://doi.org/10.1039/c3ee43707h.
    [18] C. Li, H. Xu, C. Zhi, Z. Wan, Z. Li, TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells, Chinese Phys. B 31 (2022). https://doi.org/10.1088/1674-1056/ac8349.
    [19] T. Duong, H. Pham, T.C. Kho, P. Phang, K.C. Fong, D. Yan, Y. Yin, J. Peng, M.A. Mahmud, S. Gharibzadeh, B.A. Nejand, I.M. Hossain, M.R. Khan, N. Mozaffari, Y. Wu, H. Shen, J. Zheng, H. Mai, W. Liang, C. Samundsett, M. Stocks, K. McIntosh, G.G. Andersson, U. Lemmer, B.S. Richards, U.W. Paetzold, A. Ho‐Ballie, Y. Liu, D. Macdonald, A. Blakers, J. Wong‐Leung, T. White, K. Weber, K. Catchpole, High Efficiency Perovskite‐Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite, Adv. Energy Mater. 10 (2020). https://doi.org/10.1002/aenm.201903553.
    [20] A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger, W. Nemeth, E.A. Gaulding, S.P. Dunfield, M. Reese, S. Nanayakkara, T. Moot, J. Werner, J. Liu, B. To, S.T. Christensen, M.D. McGehee, M.F.A.M. van Hest, J.M. Luther, J.J. Berry, D.T. Moore, Enabling Flexible All-Perovskite Tandem Solar Cells, Joule 3 (2019) 2193–2204. https://doi.org/10.1016/j.joule.2019.05.009.
    [21] T. Duong, T. Nguyen, K. Huang, H. Pham, S.G. Adhikari, M.R. Khan, L. Duan, W. Liang, K.C. Fong, H. Shen, A.D. Bui, A.O. Mayon, T. Truong, G. Tabi, V. Ahmad, S. Surve, J. Tong, T. Kho, T. Tran‐Phu, T. Lu, J. Zheng, U.W. Paetzold, U. Lemmer, A.H. Baillie, Y. Liu, G. Andersson, T. White, K. Weber, K. Catchpole, Bulk Incorporation with 4‐Methylphenethylammonium Chloride for Efficient and Stable Methylammonium‐Free Perovskite and Perovskite‐Silicon Tandem Solar Cells, Adv. Energy Mater. 13 (2023). https://doi.org/10.1002/aenm.202203607.
    [22] M. Anaya, G. Lozano, M.E. Calvo, H. Míguez, ABX3 Perovskites for Tandem Solar Cells, Joule 1 (2017) 769–793. https://doi.org/10.1016/j.joule.2017.09.017.
    [23] S.D.H. Naqvi, K. Son, W. Jung, H. ung Hwang, S. Lee, A. Lee, M. Keum, S. Kim, J.W. Kim, M.G. Kang, H. Song, S. Hong, I. Jeong, S. Ahn, A. Lambertz, K. Ding, W. Duan, K. Yim, S. Ahn, Mitigating Intrinsic Interfacial Degradation in Semi‐Transparent Perovskite Solar Cells for High Efficiency and Long‐Term Stability, Adv. Energy Mater. 13 (2023). https://doi.org/10.1002/aenm.202302147.
    [24] T. Kinoshita, K. Nonomura, N.J. Jeon, F. Giordano, A. Abate, S. Uchida, T. Kubo, S. Il Seok, M.K. Nazeeruddin, A. Hagfeldt, M. Grätzel, H. Segawa, Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells, Nat. Commun. 6 (2015) 1–8. https://doi.org/10.1038/ncomms9834.
    [25] M.F. Vildanova, A.B. Nikolskaia, S.S. Kozlov, O.I. Shevaleevskiy, L.L. Larina, Novel Types of Dye-Sensitized and Perovskite-Based Tandem Solar Cells with a Common Counter Electrode, Tech. Phys. Lett. 44 (2018) 126–129. https://doi.org/10.1134/S106378501802013X.
    [26] M. Hosseinnezhad, Enhanced Performance of Dye-Sensitized Solar Cells Using Perovskite/DSSCs Tandem Design, J. Electron. Mater. 48 (2019) 5403–5408. https://doi.org/10.1007/s11664-019-07272-w.
    [27] L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: Toward the efficiency limits, Adv. Phys. X 4 (2019). https://doi.org/10.1080/23746149.2018.1548305.
    [28] Y. Zhang, L. Zhou, C. Zhang, Research Progress of Semi-Transparent Perovskite and Four-Terminal Perovskite/Silicon Tandem Solar Cells, Energies 17 (2024). https://doi.org/10.3390/en17081833.
    [29] P. Löper, S.J. Moon, S. Martín De Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J.H. Yum, S. De Wolf, C. Ballif, Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells, Phys. Chem. Chem. Phys. 17 (2015) 1619–1629. https://doi.org/10.1039/c4cp03788j.
    [30] J. Werner, L. Barraud, A. Walter, M. Bräuninger, F. Sahli, D. Sacchetto, N. Tétreault, B. Paviet-Salomon, S.J. Moon, C. Allebé, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen, C. Ballif, Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells, ACS Energy Lett. 1 (2016) 474–480. https://doi.org/10.1021/acsenergylett.6b00254.
    [31] T. Duong, N. Lal, D. Grant, D. Jacobs, P. Zheng, S. Rahman, H. Shen, M. Stocks, A. Blakers, K. Weber, T.P. White, K.R. Catchpole, Semitransparent Perovskite Solar Cell With Sputtered Front and Rear Electrodes for a Four-Terminal Tandem, IEEE J. Photovoltaics 6 (2016) 679–687. https://doi.org/10.1109/JPHOTOV.2016.2521479.
    [32] M. Yang, D.H. Kim, Y. Yu, Z. Li, O.G. Reid, Z. Song, D. Zhao, C. Wang, L. Li, Y. Meng, T. Guo, Y. Yan, K. Zhu, Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells, Mater. Today Energy 7 (2018) 232–238. https://doi.org/10.1016/j.mtener.2017.10.001.
    [33] D. Zhang, M. Najafi, V. Zardetto, M. Dörenkämper, X. Zhou, S. Veenstra, L.J. Geerligs, T. Aernouts, R. Andriessen, High efficiency 4-terminal perovskite/c-Si tandem cells, Sol. Energy Mater. Sol. Cells 188 (2018) 1–5. https://doi.org/10.1016/j.solmat.2018.07.032.
    [34] M. Jaysankar, M. Filipič, B. Zielinski, R. Schmager, W. Song, W. Qiu, U.W. Paetzold, T. Aernouts, M. Debucquoy, R. Gehlhaar, J. Poortmans, Perovskite-silicon tandem solar modules with optimised light harvesting, Energy Environ. Sci. 11 (2018) 1489–1498. https://doi.org/10.1039/c8ee00237a.
    [35] M. Jaysankar, B.A.L. Raul, J. Bastos, C. Burgess, C. Weijtens, M. Creatore, T. Aernouts, Y. Kuang, R. Gehlhaar, A. Hadipour, J. Poortmans, Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells, ACS Energy Lett. 4 (2019) 259–264. https://doi.org/10.1021/acsenergylett.8b02179.
    [36] E. Aydin, M. De Bastiani, X. Yang, M. Sajjad, F. Aljamaan, Y. Smirnov, M.N. Hedhili, W. Liu, T.G. Allen, L. Xu, E. Van Kerschaver, M. Morales-Masis, U. Schwingenschlögl, S. De Wolf, Zr-Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskite-Based Tandem Solar Cells, Adv. Funct. Mater. 29 (2019) 1–10. https://doi.org/10.1002/adfm.201901741.
    [37] H.A. Dewi, H. Wang, J. Li, M. Thway, R. Sridharan, R. Stangl, F. Lin, A.G. Aberle, N. Mathews, A. Bruno, S. Mhaisalkar, Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems, ACS Appl. Mater. Interfaces 11 (2019) 34178–34187. https://doi.org/10.1021/acsami.9b13145.
    [38] Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu, X. Xu, Q. Chang, S. Yang, F. Meng, Z. Liu, N. Yuan, J. Ding, S. (Frank) Liu, D. Yang, 27%‐Efficiency Four‐Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh, Adv. Funct. Mater. 30 (2020) 1908298. https://doi.org/10.1002/adfm.201908298.
    [39] S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla, S. Schäfer, M. Rienäcker, T. Wietler, R. Peibst, U. Lemmer, B.S. Richards, U.W. Paetzold, 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS, Adv. Funct. Mater. 30 (2020). https://doi.org/10.1002/adfm.201909919.
    [40] A. Rohatgi, K. Zhu, J. Tong, D.H. Kim, E. Reichmanis, B. Rounsaville, V. Prakash, Tandem Solar Cell Composed of a High-Performance Semitransparent Perovskite Cell and a Doped Poly-Si / SiO x Passivating Contact Silicon Cell, IEEE J. Photovoltaics (2019) 1–6.
    [41] Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan, J. Xie, Y. Wang, Y. Zhang, D. Yang, X. Yu, Phase‐Stable Wide‐Bandgap Perovskites for Four‐Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency, Small 18 (2022). https://doi.org/10.1002/smll.202203319.
    [42] S. Yoon, H.U. Ha, H.J. Seok, H.K. Kim, D.W. Kang, Highly Efficient and Reliable Semitransparent Perovskite Solar Cells via Top Electrode Engineering, Adv. Funct. Mater. 32 (2022) 1–10. https://doi.org/10.1002/adfm.202111760.
    [43] J. Tao, X. Liu, J. Shen, S. Han, L. Guan, G. Fu, D. Bin Kuang, S. Yang, F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84%, ACS Nano 16 (2022) 10798–10810. https://doi.org/10.1021/acsnano.2c02876.
    [44] C. Tian, X. Gao, J. Li, J. Pan, G. Yu, B. Huang, Y. Wen, H. Zhu, T. Bu, Y.-B. Cheng, F. Huang, Scalable Growth of Stable Wide‐Bandgap Perovskite towards Large‐Scale Tandem Photovoltaics, Sol. RRL 6 (2022). https://doi.org/10.1002/solr.202200134.
    [45] M. Wu, X. Li, Z. Ying, Y. Chen, X. Wang, M. Zhang, S. Su, X. Guo, J. Sun, C. Shou, X. Yang, J. Ye, Reconstruction of the Indium Tin Oxide Surface Enhances the Adsorption of High‐Density Self‐Assembled Monolayer for Perovskite/Silicon Tandem Solar Cells, Adv. Funct. Mater. 33 (2023). https://doi.org/10.1002/adfm.202304708.
    [46] W. Chai, L. Li, W. Zhu, D. Chen, L. Zhou, H. Xi, J. Zhang, C. Zhang, Y. Hao, Graded Heterojunction Improves Wide-Bandgap Perovskite for Highly Efficient 4-Terminal Perovskite/Silicon Tandem Solar Cells, Research 6 (2023) 1–10. https://doi.org/10.34133/research.0196.
    [47] Y. Ou, H. Huang, H. Shi, Z. Li, Z. Chen, M. Mateen, Z. Lu, D. Chi, S. Huang, Collaborative interfacial modification and surficial passivation for high-efficiency MA-free wide-bandgap perovskite solar cells, Chem. Eng. J. 469 (2023) 143860. https://doi.org/10.1016/j.cej.2023.143860.
    [48] Z. Li, X. Li, X. Chen, X. Cui, C. Guo, X. Feng, D. Ren, Y. Mo, M. Yang, H. Huang, R. Jia, X. Liu, L. Han, S. Dai, M. Cai, In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics, Joule 7 (2023) 1363–1381. https://doi.org/10.1016/j.joule.2023.04.009.
    [49] J. Tao, J. Xue, H. Guo, Y. Wang, J. Shen, T. Wang, T. He, G. Fu, S. Yang, Precisely adjusting the organic/electrode interface charge barrier for efficient and stable Ag-based regular perovskite solar cells with >23% efficiency, Chem. Eng. J. 463 (2023) 142445. https://doi.org/10.1016/j.cej.2023.142445.
    [50] J. Ramanujam, U.P. Singh, Copper indium gallium selenide based solar cells - A review, Energy Environ. Sci. 10 (2017) 1306–1319. https://doi.org/10.1039/c7ee00826k.
    [51] S. Pisoni, R. Carron, T. Moser, T. Feurer, F. Fu, S. Nishiwaki, A.N. Tiwari, S. Buecheler, Tailored lead iodide growth for efficient flexible perovskite solar cells and thin-film tandem devices, NPG Asia Mater. 10 (2018) 1076–1085. https://doi.org/10.1038/s41427-018-0099-1.
    [52] H. Li, F. Qu, H. Luo, X. Niu, J. Chen, Y. Zhang, H. Yao, X. Jia, H. Gu, W. Wang, Engineering CIGS grains qualities to achieve high efficiency in ultrathin Cu(InxGa1−x)Se2 solar cells with a single-gradient band gap profile, Results Phys. 12 (2019) 704–711. https://doi.org/10.1016/j.rinp.2018.12.043.
    [53] Y.G. Tu, G.N. Xu, X.Y. Yang, Y.F. Zhang, Z.J. Li, R. Su, D.Y. Luo, W.Q. Yang, Y. Miao, R. Cai, L.H. Jiang, X.W. Du, Y.C. Yang, Q.S. Liu, Y. Gao, S. Zhao, W. Huang, Q.H. Gong, R. Zhu, Mixed-cation perovskite solar cells in space, Sci. China Physics, Mech. Astron. 62 (2019) 7–10. https://doi.org/10.1007/s11433-019-9356-1.
    [54] H. Liang, J. Feng, C.D. Rodríguez-Gallegos, M. Krause, X. Wang, E. Alvianto, R. Guo, H. Liu, R.K. Kothandaraman, R. Carron, A.N. Tiwari, I.M. Peters, F. Fu, Y. Hou, 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells, Joule 7 (2023) 2859–2872. https://doi.org/10.1016/j.joule.2023.10.007.
    [55] T. Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites, ACS Energy Lett. 2 (2017) 2159–2165. https://doi.org/10.1021/acsenergylett.7b00636.
    [56] Z. Yang, A. Rajagopal, C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K. ‐Y. Jen, Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells, Adv. Mater. 28 (2016) 8990–8997. https://doi.org/10.1002/adma.201602696.
    [57] P. Jia, G. Chen, G. Li, J. Liang, H. Guan, C. Wang, D. Pu, Y. Ge, X. Hu, H. Cui, S. Du, C. Liang, J. Liao, G. Xing, W. Ke, G. Fang, Intermediate Phase Suppression with Long Chain Diammonium Alkane for High Performance Wide-Bandgap and Tandem Perovskite Solar Cells, Adv. Mater. 36 (2024) 1–10. https://doi.org/10.1002/adma.202400105.
    [58] S. Venkatesan, T.H. Hsu, X.W. Wong, H. Teng, Y.L. Lee, Tandem dye-sensitized solar cells with efficiencies surpassing 33% under dim-light conditions, Chem. Eng. J. 446 (2022) 137349. https://doi.org/10.1016/j.cej.2022.137349.
    [59] S.S.Y. Juang, P.Y. Lin, Y.C. Lin, Y.S. Chen, P.S. Shen, Y.L. Guo, Y.C. Wu, P. Chen, Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells, Front. Chem. 7 (2019) 1–9. https://doi.org/10.3389/fchem.2019.00209.
    [60] Ali Salman Ali, Application of Nanomaterials in Environmental Improvement, 2020.
    [61] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ. 95 (2018) 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.
    [62] L. Kavan, N. Tétreault, T. Moehl, M. Grätzel, Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells, J. Phys. Chem. C 118 (2014) 16408–16418. https://doi.org/10.1021/jp4103614.
    [63] K. Kalyanasundaram, Dye-sensitized Solar Cells, EPFL Press, 2010. https://doi.org/10.1201/b16409.
    [64] T. Sen Su, T.Y. Hsieh, C.Y. Hong, T.C. Wei, Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells, Sci. Rep. 5 (2015) 1–8. https://doi.org/10.1038/srep16098.
    [65] L. Zhang, X. Yang, B. Cai, H. Wang, Z. Yu, L. Sun, Triazatruxene-based sensitizers for highly efficient solid-state dye-sensitized solar cells, Sol. Energy 212 (2020) 1–5. https://doi.org/10.1016/j.solener.2020.10.027.
    [66] F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S.M. Zakeeruddin, M. Grätzel, Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor, J. Am. Chem. Soc. 131 (2009) 558–562. https://doi.org/10.1021/ja805850q.
    [67] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, M. Grätzel, Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells, Adv. Mater. 17 (2005) 783–934.
    [68] N. Cai, S.J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Grätzel, An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells, Nano Lett. 11 (2011) 1452–1456. https://doi.org/10.1021/nl104034e.
    [69] A. Konno, G.R.A. Kumara, S. Kaneko, B. Onwona-Agyeman, K. Tennakone, Solid-state solar cells sensitized with indoline dye, Chem. Lett. 36 (2007) 716–717. https://doi.org/10.1246/cl.2007.716.
    [70] I. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, M.D. McGehee, Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Adv. Funct. Mater. 19 (2009) 2431–2436. https://doi.org/10.1002/adfm.200900541.
    [71] P. Baruch, A. De Vos, P.T. Landsberg, J.E. Parrott, On some thermodynamic aspects of photovoltaic solar energy conversion, Sol. Energy Mater. Sol. Cells 36 (1995) 201–222. https://doi.org/10.1016/0927-0248(95)80004-2.
    [72] H. Zhu, L. Pan, F.T. Eickemeyer, M.A. Hope, O. Ouellette, A.Q.M. Alanazi, J. Gao, T.P. Baumeler, X. Li, S. Wang, S.M. Zakeeruddin, Y. Liu, L. Emsley, M. Grätzel, Efficient and Stable Large Bandgap MAPbBr 3 Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V, ACS Energy Lett. 7 (2022) 1112–1119. https://doi.org/10.1021/acsenergylett.1c02431.
    [73] H. Zhu, L. Pan, F.T. Eickemeyer, M.A. Hope, O. Ouellette, A.Q.M. Alanazi, J. Gao, T.P. Baumeler, X. Li, S. Wang, S.M. Zakeeruddin, Y. Liu, L. Emsley, M. Grätzel, Efficient and Stable Large Bandgap MAPbBr3 Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V, ACS Energy Lett. 7 (2022) 1112–1119. https://doi.org/10.1021/acsenergylett.1c02431.

    QR CODE