簡易檢索 / 詳目顯示

研究生: 侯鐵君
Hou, Tie-Jiun
論文名稱: Higgs Sector of the NMSSM with CP Violation
具CP破缺之次最小超對稱延伸標準模型的希格斯分部
指導教授: 張敬民
Cheung, Kingman
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 55
中文關鍵詞: 希格斯粒子超對稱CP破缺
外文關鍵詞: Higgs, NMSSM, CP violation
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Higgs boson sector of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is considered with explicit and spontaneous CP violation. With the mixing between CP-even and CP-odd Higgs states caused by the non-zero CP phase, the Higgs spectrum and coupling to weak gauge boson are calculated. Full one loop contribution from third generation quark and squark are taken into account by using effective potential method. Logarithmic enhanced two loop contribution is considered by using renormalization group method. Acceptable region in parameter space is considered with three conditions, the LEP limit, global minimum and positivity of Higgs mass square. Numerical results are presented with three scenarios, which focus on the comparison between acceptable region with and without the inclusion of RG improvement and acceptable region with and without non-zero CP phase. It shows that the RG improvement and CP non-conserving effect can provide substantial modification to the acceptable region in parameter space depending on the scenarios.


    1 Introduction 4 2 Higgs sector at tree level 7 7 2.1 Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Coupling to Weak Gauge Boson . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Mass Eigenvalues in Perturbation Method . . . . . . . . . . . . . . . . . . 13 3 Higgs Sector at One-Loop Level 18 3.1 Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Renormalization Group Improvement . . . . . . . . . . . . . . . . . . . . . 21 4 Numerical Results 22 4.1 A typical scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 A LEP-compatible scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 A strong global minimum scenario . . . . . . . . . . . . . . . . . . . . . . . 31 5 Summary and Conclusion 32 A Block Diagonalization 36 A.1 Formula of Block Diagonalization . . . . . . . . . . . . . . . . . . . . . . . 36 (0)2 A.2 Block Diagonalization of MS . . . . . . . . . . . . . . . . . . . . . . . . 41 (0)2 A.3 Block Diagonalization of MN . . . . . . . . . . . . . . . . . . . . . . . . 43 B 1-Loop contribution 47 B.1 Field dependent Mass Square of Third Generation Quark and Squark . . . 47 B.2 Derivation of Mass Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    References
    [1] J. E. Kim and H. P. Nilles, Phys. Lett. B 138, 150 (1984); Y. Nir, Phys. Lett. B 354,
    107 (1995); M. Cvetic and P. Langacker, Phys. Rev. D 54, 3570 (1996).
    [2] U. Ellwanger, C. Hugonie and A. M. Teixeira, arXiv:0910.1785 [hep-ph]; S. Chang,
    R. Dermisek, J. F. Gunion and N. Weiner, Ann. Rev. Nucl. Part. Sci. 58, 75 (2008)
    [arXiv:0801.4554 [hep-ph]].
    [3] A. Arhrib, K. Cheung, T. J. Hou and K. W. Song, JHEP 0703 (2007) 073 [arXiv:hep-
    ph/0606114].
    [4] K. Cheung and T. J. Hou, Phys. Lett. B 674 (2009) 54 [arXiv:0809.1122 [hep-ph]].
    [5] B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88
    (2002) 071805.
    [6] C. A. Baker et al., Phys. Rev. Lett. 97 (2006) 131801.
    [7] M. V. Romalis, W. C. Griffith and E. N. Fortson, Phys. Rev. Lett. 86 (2001) 2505.
    [8] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and
    E. N. Fortson, Phys. Rev. Lett. 102 (2009) 101601.
    [9] See, for example, J. R. Ellis, J. S. Lee and A. Pilaftsis, JHEP 0810 (2008) 049
    [arXiv:0808.1819 [hep-ph]].
    [10] A. Pilaftsis, Phys. Rev. D 58 (1998) 096010; Phys. Lett. B 435 (1998) 88.
    [11] A. Pilaftsis and C.E.M. Wagner, Nucl. Phys. B 553 (1999) 3.
    [12] D.A. Demir, Phys. Rev. D 60 (1999) 055006.
    [13] S.Y. Choi, M. Drees and J.S. Lee, Phys. Lett. B 481 (2000) 57; M. Carena, J. Ellis,
    A. Pilaftsis and C.E.M. Wagner, Nucl. Phys. B625 (2002) 345.
    [14] M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, Nucl. Phys. B586 (2000) 92.
    [15] J. S. Lee, AIP Conf. Proc. 1078 (2009) 36 [arXiv:0808.2014 [hep-ph]].
    [16] E. Accomando et al., arXiv:hep-ph/0608079.
    [17] R. Barate et al. [LEP Working Group for Higgs boson searches], Phys. Lett. B 565,
    61 (2003).
    [18] D. J. Miller, R. Nevzorov and P. M. Zerwas, Nucl. Phys. B 681 (2004) 3 [arXiv:hep-
    ph/0304049].
    [19] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7 (1973) 1888.
    [20] R. Jackiw, Phys. Rev. D 9 (1974) 1686.
    [21] K. Funakubo and S. Tao, Prog. Theor. Phys. 113 (2005) 821 [arXiv:hep-ph/0409294].
    [22] K. Funakubo, S. Tao and F. Toyoda, Prog. Theor. Phys. 109 (2003) 415 [arXiv:hep-
    ph/0211238].
    [23] H. E. Haber, R. Hempfling and A. H. Hoang, Z. Phys. C 75 (1997) 539 [arXiv:hep-
    ph/9609331].
    [24] U. Ellwanger, J. F. Gunion and C. Hugonie, JHEP 0502 (2005) 066 [arXiv:hep-
    ph/0406215]; U. Ellwanger and C. Hugonie, Comput. Phys. Commun. 175 (2006)
    290 [arXiv:hep-ph/0508022].
    [25] S. Schael et al. [ALEPH Collaboration and DELPHI Collaboration and L3 Collabora-
    tion and ], Eur. Phys. J. C 47 (2006) 547 [arXiv:hep-ex/0602042].
    [26] K. Funakubo, S. Tao and F. Toyoda, Prog. Theor. Phys. 114, 369 (2005) [arXiv:hep-
    ph/0501052].
    [27] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes,
    (Cambridge University Press, 1986).
    [28] S. P. Martin, arXiv:hep-ph/9709356.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE