簡易檢索 / 詳目顯示

研究生: 楊淑珍
Yang Shu-Chen
論文名稱: 東非眼鏡蛇心臟毒蛋白對人類嗜中性白血球作用機制之研究及其標的蛋白之鑑定
The Study of Possible Actions in Cardiotoxin-induced Human Nentrophils Proinflammation and Its Binding Targets Identification
指導教授: 吳文桂
Wu Wen-guey
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 心臟毒蛋白嗜中性白血球發炎絲胺酸蛋白酶基質金屬蛋白酶-9乳鐵蛋白
外文關鍵詞: cardiotoxin, neutrophil, inflammation, serine proteinase, MMP-9, lactotransferrin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 造成組織細胞壞死並引發嚴重的發炎反應是蛇毒心臟毒蛋白眾多的病理反應之一,然而,文獻上卻欠缺有關造成此一反應的作用模式及其分子機制之相關研究。在本篇論文中,我們利用人類嗜中性白血球以及老鼠心肌細胞株兩種細胞的生理特性,建立一個實驗模式,以直接和間接的方法嘗試了解蛇毒心臟毒蛋白對細胞的作用機轉及其誘發發炎反應的可能途徑,並且透過自製心臟毒蛋白親和管柱的專一性,來尋找細胞膜上可能與心臟毒蛋白發生作用的結合蛋白。我們初步的實驗結果顯示,於濃度梯度下並不會對人類嗜中性白血球造成明顯的化學趨化功能,但可透過自體分泌及/或旁分泌的間接方式趨化並活化自身或其他免疫細胞。藉由親和管柱的實驗,我們在嗜中性白血球細胞膜上找到四個心臟毒蛋白可能的目標蛋白,分別為乳鐵蛋白、細胞自溶酵素G、彈性蛋白酶2及分子量約60 kDa的未定義蛋白,此外,我們利用蛋白酶原法,發現心臟毒素會引起嗜中性白血球釋放出基質金屬蛋白酶9及絲胺酸蛋白酶。上述的結果,使心臟毒蛋白對細胞的作用機制及發炎反應的研究推進了一步,由我們建立的實驗模式,也有助於研究嗜中性白血球因應發炎反應的機制。


    Cardiotoxins (CTXs), most constituents of cobra venoms, was found to cause inflammatory action. In the present study, we found that toxin γ can rapidly bind to human polymorphonuclear neutrophils (PMNs) and subsequent induce inflammatory response and its possible binding targets were isolated and identified from cell surface-bound fractions. Toxin γ itself did not activate significant PMNs oxidative and chemotactic ability comparing to a well-established chemoattractant fMLP under the cytotoxic dosage. However, the PMNs were dramatically attracted by a modified Boyum assay in which the target cell, such as human PMNs, differentiated macrophages and mouse cardiomyocyte cell line were first treated with toxin respectively and the releasing chemicals were used as the assaying attractants, indicating that CTX exert its inflammatory ability, if not all, via a autocrine and/or paracrine mechanism. When PMNs were exposed to toxin γ, the binding constant was estimated to be 1 μM by a direct binding assay using FITC-conjugated toxin γ and the time course of such binding revealed a rapid and saturated interaction with a T1/2 in 5 minutes. We isolated four putative Tγ-binding proteins from PMNs cell surface-bound fractions and identified them respectively to be lactoferrin, Cathepsin G, elastase 2 and one novel protein without certain identity with a MW near 60 kDa, by the methods of MS/MS peptide search and/or protein N-terminal sequencing. Interestingly, all these proteins are serine proteinases and the caseinolytic activity of the serine proteinases and metalloproteinases can also be detected in the cell-free supernatant, whereas the corresponding control has no effect. These findings provide an insight into the inflammatory properties of CTX and suggest a novel mechanism for illustrating neutrophils action in response to CTX.

    1. 緒論 1 2. 實驗材料及方法 15 2.1 實驗材料及儀器設備 15 2.1.1 材料及藥品 15 2.1.2純化管柱 15 2.1.3儀器 16 2.2 實驗方法 16 2.2.1 純化東非眼鏡蛇心臟毒蛋白 16 2.2.2 細胞培養 16 2.2.3分離嗜中性白血球 18 2.2.4 細胞毒性之測定 21 2.2.5心臟毒蛋白之化學趨化性測試 22 2.2.6 心臟毒蛋白與嗜中性白血球之結合能力測試 23 2.2.7 Tγ-親和性管柱的製備 24 2.2.8萃取嗜中性白血球細胞膜 25 2.2.9 親和管柱分離嗜中性白血球細胞膜蛋白質 26 2.2.10製備Tγ-抗體 26 2.2.11 SDS-聚丙烯醯胺膠體電泳 28 2.2.12 西方點墨法鑑定心臟毒蛋白之結合蛋白質 29 2.2.13 質譜儀樣品製備¬-膠體內蛋白酶水解 30 2.2.14 蛋白序列分析樣品製備¬ 31 2.2.15 蛋白酶原分析-酪蛋白膠體電泳 32 2.2.16 酵素免疫分析法 33 2.2.17 聚合酶鏈反應 34 3. 實驗結果 36 3.1 心臟毒蛋白之細胞毒性 37 3.2 心臟毒蛋白對嗜中性白血球趨化能力之研究 38 3.3 心臟毒蛋白於嗜中性白血細胞膜上的結合量關係 40 3.4 心臟毒蛋白於嗜中性白血細胞膜上的結合蛋白 40 3.5 心臟毒蛋白誘發嗜中性白血球釋放出蛋白酶 41 3.6 心臟毒蛋白與細胞激素 43 4. 討論 59 5. 參考文獻 64 附錄一 TGF-β1-酵素免疫分析法 69 附錄二 TNF-α 酵素免疫分析法 81 附錄三 聚合酶鏈反應 86 附錄四 乳鐵蛋白、細胞自溶酵素G、彈性蛋白酶2之序列及結構 96

    1.Karlsson, E. (1979) Snake venoms, in Handbook of Experimental Pharmacology (Lee, C.Y., Eds.) Vol. 52, pp. 159-212, Springer, Berlin.
    2.Dufton, M.J. (1984) Classification of elapid snake neurotoxins and cytotoxins according to chain length: evolutionary implications. J. Mol. Evol. 20:128–134.
    3.Jeyaseelan, K., Armugam, A., Lachumanan, R., Tan, C.H. and Tan, N.H. (1998) Six isoforms of cardiotoxin in malayan spitting cobra (Naja naja sputatrix) venom: cloning and characterization of cDNAs. Biochim. Biophys. Acta, 1380:209–222.
    4.Dufton M.J. and Hider R.C., (1991) The structure and pharmacology of Elapid cytotoxins. In: A.L. Harvey, Editor, Snake Toxins, Pergamon press, New York, pp. 259–302.
    5.Rees B., Samama J.P., Thierry J.C., Gilibert M., Fischer J., Schweitz H., Lazdunski M. and Moras D. (1987) Crystal structure of a snake venom cardiotoxin. Proc. Natl. Acad. Sci. U. S. A. 84:3132-3126.
    6.Bilwes A., Rees, B., Moras D. and Menez R. (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol. 239:122-136.
    7.O'Connell J.F., Bougis P.E. and Wuthrich K. (1993) Determination of the nuclear-magnetic-resonance solution structure of cardiotoxin CTX IIb from Naja mossambica mossambica. Eur. J. Biochem. 213:891-900.
    8.Rees, B., Samama, J.P., Thierry, J.C., Gilibert, M., Fischer, J., Schweitz, H., Lazdunski, M. and Moras, D. (1987) Crystal structure of a snake venom cardiotoxin. Proc. Natl. Acad. Sci. U. S. A. 84:3132-3126.
    9.Sun, Y.J., Wu, W., Chiang, C.M., Hsin, A.Y. and Hsiao, C.D. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry. 36:2403-2413.
    10.Bilwes A., Rees B., Moras D., Menez R., Menez A.(1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J Mol Biol, 239:122
    11.Campbell CH.(1979) Symptomatology, pathology and treatment of bites of elapid snakes. Handb. Exp. Pharmacol. 52:898-977.
    12.Kuo T.P. and Wu C.S.(1972) Clinicopathological studies on snakebites in Taiwan. The Snake. 4: 1–22.
    13.Liao W.B., Lee C.W., Tsai, Y.S., Liu B.M. and Chung, K.J.(2000) Influential factors affecting prognosis of snakebite patients management: Kaohsiung Chang Gung Memorial hospital experience. Chang Gung Med J. 23:577–583.
    14.Lee CY, Chang CC, Chiu TH, Chiu PJ, Tseng TC, and Lee SY.(1968) Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn Schiedebergs Arch Pharmacol. 259:360-379.
    15.Damerau B., Lege L., Oldigs HD., Vogt W. (1975) Histamine release, formation of prostaglandin-like activity (SRS-C) and mast cell degranulation by the direct lytic factor (DLF) and phospholipase A of cobra venom. Naunyn Schmiedebergs Arch Pharmacol. 287(2):141-56.
    16.Wang JP., and Teng CM.(1986) Roles of mast cells and PMN leukocytes in cardiotoxin-induced rat paw edema. Eur J Pharmacol. 161(1):9-18.
    17.Wang JP., Teng CM. (1990) Effect of anti-inflammatory Drugs on the cardiotoxin-induced hide-paw oedema in rats. J. Pharm Pharmacol. 42:842-845.
    18.Véronique WS., Philippe R., Béatrice DL., Philippe L., Lise HM. (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest., 80(5):617-53.
    19.Boulay F, Naik N, Giannini E, Tardif M. Brouchon L. (1997) Phagocyte chemoattractant receptors. Ann NY Acad Sci, 832: 69-84
    20.Niels B., Cassatella M. (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today,16(1): 21-26.
    21.Cassatella M, Gasperini S., Russo M.P.(1997), Cytokine expression and release by neutrophils. Ann. NY Acad. Sci. 832:233-242.
    22.Cassatella, M. (1999) Neutrophil-derived proteins: swelling cytokines by the pound., Adv. Immunol. 73:369-509
    23.Scapini P., Lapinet-Vera J.A., Gasperini S., Calzetti F., Bazzoni F., Cassatella M.A. (2000) The neutrophil as a cellular source of chemokines., Immunol Rev. 177:195-203.
    24.Cheng S.S., Kunkel S.L.(2003) The Evolving Role of the Neutrophil in Chemokine Networks, Chem Immunol Allergy. 83:81–94
    25.Malyak M., Smith M.F., Abel A.A., Hance K.R. and Arend W.P. (1998) The differential production of three forms of IL-1 receptor antagonist by human neutrophils and monocytes., J Immunol. 161:2004-2010.
    26.Jablonska E, Jablonski J, Holownia A. (1999) Role of neutrophils in release of some cytokines and their soluble receptors., Immunol Lett. 70(3):191-197.
    27.Hattar K., Fink L., Fietzner K., Himmel B., Grimminger F., Seeger W., Sibelius U., (2001) Cell density regulates neutrophil IL-8 synthesis: role of IL-1 receptor antagonist and soluble TNF receptors., J Immunol. 166(10):6287-93.
    28.Bank U., Ansorge S. (2001) More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. J Leukoc Biol. 69:197–206.
    29.Chertov O., Yang D, Howard OM, Oppenheim JJ. (2000) Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev., 177: 68-78.
    30.Sun R, Iribarren P, Zhang N, Zhou Y, Gong W, Cho EH, Lockett S, Chertov O, Bednar F, Rogers TJ, Oppenheim JJ, Wang JM. (2004) Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol. 173(1):428-36.
    31.Xing LY, Remick DG. (2003) Relative cytokine and cytokine inhibitor production by mononuclear cells and neutrophils. SHOCK 20:10-16.
    32.Chertov O., Ueda H., Xu LL., Tani K, Murphy WJ., Wang JM., Howard OM., Sayers TJ, Oppenheim JJ. (1997) Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils., J Exp Med. 186(5): 739-47.
    33.Cowland Jack B. (1997) Granules of the Human Neutrophilic Polymorphonuclear Leukocyte. Blood, 89(10): 3503-3521.
    34.Owen C.A., Campbell E.J. (1995) Neutrophil proteinases and matrix degradation. The cell biology of pericellular proteolysis., Semin Cell Biol. 6(6):367-76.
    35.Lee WL, Downey GP. (2001) Leukocyte Elastase: Physiological Functions and Role in Acute Lung Injury, Am J Respir Cri. Care Med. 164(5): 896-904.
    36.Owen C.A., Campbell E.J. (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 65(2), 137-150.
    37.Opdenakker G., Van den Steen PE., Dubois B., Nelissen I., Van Coillie E., Masure S., Proost P., and Van Damme J. (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol. 69(6):851-859.
    38.Owen CA. and Campbell E J. (1995) Neutrophil proteinases and matrix degradation. The cell biology of pericellular proteolysis. Semin Cell Biol. 6(6):367-76.
    39.Owen CA., Campbell MA., Sannes PL., Boukedes SS., Campbell EJ (1995) Cell surface-bound elastase and cathepsin G on human neutrophils: A novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol. 131: 775–789.
    40.Witko-Sarsat V, Cramer EM, Hieblot C, Guichard J, Nusbaum P, Lopez S, Lesavre P, Halbwachs-Mecarelli L. (1999) Presence of proteinase 3 in secretory vesicles: evidence of a novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood. 94(7):2487-2496.
    41.Campbell EJ., Campbell MA., Owen CA. (2000) Bioactive Proteinase 3 on the Cell Surface of Human Neutrophils: Quantification, Catalytic Activity, and Susceptibility to Inhibition., J Immunol, 165(6):3366-74.
    42.Owen CA., Hu Z., Lopez-Otin C., Shapiro SD. (2004) Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J Immunol. 172(12):7791-803.
    43.Owen CA., Hu Z., Barrick B., Shapiro SD. (2003) Inducible expression of tissue inhibitor of metalloproteinases-resistant matrix metalloproteinase-9 on the cell surface of neutrophils. Am J Respir Cell Mol Biol. 29(3 Pt 1): 283-294.
    44.Zaheer A., Noronha SH., Haspattankar AV., Braganca BM. (1975) Inactivation of [Na+-K+]-stimulated ATPase by a cytotoxic protein from cabra venom in relation to its lytic effects on cells. Biochem Biophys Acta. 394(2):293-303
    45.Condrea E., Mammon Z., Aloof S. and Vries A.D.(1964), Susceptibility of erothocytes of various animal species to the hemolytic and phospholipids-spitting action of snake venom., Biochem. Biophys. Acta., 84:365-375.
    46.Vincent J.P., Schweitz, H., Chicheportiche R., Fosset M., Balerna M., Lenoir M.C.and Lazdunski M. (1976) Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry. 15:3171-3175.
    47.Dufourcq J. and Faucon J.F. (1978) Specific binding of a cardiotoxin from Naja mossambica mossambica to charged phospholipids detected by intrinsic fluorescence.Biochemistry. 17:1170-1176.
    48.Lauterwein J.R., and Wuthrich K. (1978) A possible structure basis for the different modes of action neurotoxins and cardiotoxins from snake venoms. FEBS Lett. 93:181-184.
    49.Wu W., Li Y., Szabo G. (1993) FASEB J. 7, A1235
    50.Chien KY., Huang WN, Jean JH., and Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom: Interactions of zwitterionic phospholipids with cardiotoxin analogues, J. Biol. Chem. 266:3252-3259.
    51.Chien KY., Chiang CM., Hseu YC, Vyas AA., Rule G.S., and Wu W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions, J Biol Chem. 269:14473-14483.
    52.Chiang CM., Chien KY., Lin H., Lin, JF., Yeh HC., Ho Pl., and Wu W. (1996) Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH, Biochemistry 35:9167-9176.
    53.Huang,W.N., Sue,S.C., Wang, D.S., Wu, P.L., and Wu W. (2003) Peripheral Binding Mode and Penetration Depth of Cobra Cardiotoxin on Phospholipid Membranes as Studied by a Combined FTIR and Computer Simulation Approach. Biochemistry 42:7457-7466.
    54.Forouhar F., Huang W.N., Lin J.H., Chien K.Y. Wu W., and Hsiao C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278:21980-21988.
    55.Sue S.C., Chien K.Y., Huang W.N., Abraham J.K., Chen K.M. and Wu W. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673.
    56.Lee S.C., Guan H.H., Wang C.H., Huang W.N., Chen C.J., and Wu W. (2005) Structural basis of venom citrate-dependent heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J. Biol. Chem. 280:9567-9577.
    57.Rovera G, Santoli D, Damsky C. (1979) Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci. 76(6):2779-2783.
    58.Bouym, A. (1984) Separation of lymphocyte, granulocute, and monocytes from blood using iodinated density gradient media. Methods in Enzymology. 108:88-102.
    59.Brattig N.W., Medina-De la Garza C.E., Tischendorf F.W. (1993) Improved Randolph stain for direct leukocyte differentiation and determination of total eosinophil count in a hemocytometer. Biotech Histochem. 68: 255-259.
    60.Ebrahimzadeh PR, Hogfors C, and Braide M. (2000) Neutrophil chemotaxis in moving gradients of fMLP. J Leukoc Biol. 67: 651-61.
    61.Carlson DE. Statland BE. (1988) Automated urinalysis. Clin Lab Med. 8:449-461.
    62.Tomoki, S., Shiroh, F., Miki, N., Seigo, T., Kunihiro, U. and Yukio, S. (2002) Possible existence of common internalization mechanisms among arginine-rich peptides. J.Biol. Chem. 25:2437–2443.
    63.Su SH., Su SJ., Lin SR. and Chang KL.(2003) Cardiotoxiin-III selectively enhances activation-induced apoptosis of human CD8+ T lymphocytes. Toxicol. Appl. Pharmacol. 193:97–105.
    64.Harvey, A. L., Marshall, R. J. and Karlsson, E. (1982) Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon, 20:379-396.
    65.Chen, X. H. and Harvey, A. L. (1993) Effects of different antagonists on depolarization of cultured chick myotubes by cobra venom cardiotoxins and Pyrularia thionin from the plant Pyrularia pubera. Toxicon 31, 1229-1236.
    66.Teng, C. M., Jy, W. and Ouyang, C. (1984) Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22:463-470.
    67.Zaheer, A. and Braganca, B. M. (1980) Comparative study of three basic polypeptides from snake venoms in relation to their effects on the cell membrane of normal and tumor cells. Cancer Biochem. Biophys, 5:41-46.
    68.Hinman CL, Lepist E, Stevens R, Montgomery IN, Rauch HC, Hudson R A, (1987) Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes, Toxicon, 25(9):1011-1014.
    69.Hinman CL, Jiang XL, Tang HP., (1990) Selective cytolysis by a protein toxin as a consequence of direct interaction with the lymphocyte plasma membrane, Toxicol Appl Pharmacol, 104(2):290-300
    70.Hirata A, Masuda S, Tamura T, Kai K, Ojima K, Fukase A, Motoyoshi K, Kamakura K, Miyagoe-Suzuki Y, Takeda S. (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am J Pathol. 163(1):203-15.71.Deriy LV., Chor J., Thomas LL. (2000) Surface expression of lactoferrin by resting neutrophils. Biochem Biophys Res Commun. 275(1):241-6.
    72.Otto BR, Verweij-van Vught AM, MacLaren DM. (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol. 18(3):217–233.
    73.Ellison RT 3rd, Giehl TJ. (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 88(4):1080-1091.
    74.Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. (2003) Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 47(3):607-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE