研究生: |
李淳漢 |
---|---|
論文名稱: |
Synthesis and characterization of cyclopentadithiophene (CPDT)-naphthalene (NDI) push-pull ABA-type oligomers and copolymers |
指導教授: | 堀江正樹 |
口試委員: |
蘇安仲
游進陽 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | conjugated polymer 、n-type material 、C-H direct arylation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis presents the synthesis, characterization, and device performance of a
series of cyclopentadithiophene (CPDT)-naphthalene (NDI) donor-acceptor (D-A)
ABA-type oligomers and copolymers. These oligomers composed of
CPDT-NDI-CPDT unit with various alkyl chains are successfully synthesized via
direct arylation using palladium complex catalyst. The corresponding copolymers are
synthesized by oxidative polymerization using FeCl3. All of oligomers and
copolymers are systematically characterized and analyzed by gel permeation
chromatography (GPC), 1H NMR and UV-vis-NIR absorption spectroscopies, cyclic
voltammetry (CV), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and
differential scanning calorimetry (DSC). GPC measurement shows that these
polymers are of relatively high molecular weight, Mn = 21800-76000. These
copolymers show deep-red absorption including near-infrared region (up to 1100 nm)
due to their quite narrow bandgap. Impressively, the electrochemical property of the
resulting copolymers exhibits lowest unoccupied molecular orbital (LUMO) at about -
3.7 eV, which has been considered as the favorable level as n-type materials for use in
organic photovoltaic devices (OPVs).
These copolymers exhibit only n-type property giving the highest electron
mobility of 3.7 x 10-4 cm2 V-1 s-1 in organic field-effect transistor because of its strong
intermolecular interaction. On the other hand, the copolymer with highly soluble
branched alkyl chain shows the highest power conversion efficiency of 0.25% in
organic photovoltaic device.
To investigate the versatile reactivity of C-H direct arylation, the copolymers
composed of above unit with benzothiadiazole, thiophene, or bithiophene are also
II
synthesized by direct arylation polymerization. All polymers have higher molecular
weight (Mn = 18000-52000) than the alternative polymers of dibromo-NDI and CPDT
obtained from similar reaction condition. The optical and electrochemical properties
of these polymers are measured by UV-vis-NIR spectra, 1H-NMR, GPC and CVs.
1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
2. H. Sirringhaus, Adv. Mater. 2005, 17, 2411.
3. A. Facchetti, Mater. Today. 2007, 10, 28.
4. X. W. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
5. D. J. Gundlach, J. A. Nichols, L. Zhou, T. N. Jackson, Appl. Phys. Lett. 2002, 80, 2925.
6. C. Reese, W. J. Chung, M.-m. Ling, M. Roberts, Z. Bao, Appl. Phys. Lett. 2006, 89, 202108.
7. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169
8. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
9. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
10. D. M. deLeeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
11. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao,; Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
12. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331.
13. D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, J. T. Carey, Chem. Mater. 2008, 20, 7486
14. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
15. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. d. Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
16. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Gunes, N. S. Sariciftci, R. Schwodiauer, S. Bauer, J. Appl. Phys. 2005, 97, 083714.
17. A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
18. H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
19. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
20. T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315
21. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
22. Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch and H. Sirringhaus, Adv. Mater., 2012, 24, 647–652.
23. G. Horowitz, Adv. Mater. 1998, 10, 365.
24. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
25. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
26. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
27. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
28. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
29. Z. Bao, J. Locklin, Organic Field-Effect Transistors, CRC Press: Taylor & Francis Group, 2007
30. J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791
31. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394.
32. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
33. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789
34. J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res., 2009, 42, 1700
35. D. Venkataraman, S. Yurt, B. H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 2010, 1, 947–958
36. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
37. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, J. Hou, Macromolecules 2012, 45, 6923
38. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
39. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
40. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science. 317, 222 (2007)
41. G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
42. A. Facchetti, Chem. Mater. 2011, 23, 733–758
43. Sista, S. et al. Adv. Mater. 2010, 22, 380.
44. U. Salzner, J. B. Lagowski, P.G. Pickup, R.A. Poirier, Synth Met 1998, 96, 177.
45. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868
46. McCullough RD, Ewbank PC. Head-to-tail coupled poly(3-alkylthiophene) and its derivatives. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers. 2nd ed. New York: Marcel Dekker; 1998. p. 225.
47. E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym Bull. 1992, 29, 119.
48. G. Brocks, A. Tol, J. Phys. Chem., 1996, 100, 1838.
49. T.J. Prosa, M.J. Winokur, J. Moulton, P. Smith, A.J. Heeger, Macromolecules. 1992, 25, 4364.
50. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
51. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457
52. M. Sato, N. Miyaura, A. Suzuki, Chem. Lett. 1989, 1405
53. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461
54. J. K. Stille, Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
55. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
56. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
57. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704 – 4734
58. D. J. Schipper, Keith Fagnou, Chem. Mater. 2011, 23, 1594–1600
59. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792
60. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496
61. G. C. Welch, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 4632–4644
62. G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc. 2012, 134, 539
63. J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130
64. S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324
65. A. Facchetti, Chem. Mater. 2011, 23, 733
66. K. Zhang, B. Tieke, J. C. Forgie, F. Vilela, P. J. Skabara, Macromolecules. 2012, 45, 743
67. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15
68. Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
69. A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A, B. Holmes, Chem. Rev. 2009, 109, 897–1091
70. H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607−632
71. P. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 2011, 23, 456–469
72. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123
73. U. Asawapirom, U. Scherf, Macromol. Rapid. Commun. 2001, 22, 746.
74. A. Kraak, A. K. Wiersma, P. Jordens, H. Wynberg, Tetrahedron. 1968, 24, 3381.
75. G. Zotti, G. Schiavon, A. Berlin, G. Fontana, G. Pagani, Macromolecules. 1994, 27, 1938
76. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
77. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497.
78. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, J. Am. Chem. Soc., 2012, 134, 14932
79. X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem. Mater. 2012, 24, 1434
80. X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
81. H. Vollmann, H. Becker, M. Corell, H. Streeck, Liebigs Ann. Chem., 1937, 531, 1.
82. L. L. Miller, K. R. Mann, Acc. Chem. Res. 1996, 29, 417.
83. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 2000, 404, 478–481.
84. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature. 2009, 457, 679.
85. E. Ahmed, G. Q. Ren, F. S. Kim, E. C. Hollenbeck, S. A. Jenekhe, Chem. Mater. 2011, 23, 4563
86. M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381.
87. M. B. Kim, D. W. Dixon, J. Phys. Org. Chem. 2008, 21 731
88. M. R. Andersson, D. Selse, M. Berggren, H. Jarvinen, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Macromolecules. 1994, 27, 6503
89. M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369
90. M. M. Durban, P. D. Kazarinoff, C. K. Luscombe, Macromolecules. 2010, 43, 6348
91. K. Yamazaki , J. Kuwabara , T. Kanbara, Macromol. Rapid Commun. 2013, D, 69−73
92. H. Zhao, C. Y. Liu, S. C. Luo, B. Zhu, T. H. Wang, H. F. Hsu, H. h. Yu, Macromolecules 2012, 45, 7783−7790
93. P. Berrouard, A. Najari, A. Pron, D. Gendron, P. Morin, J. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem., Int. Ed. 2012, 51, 2068.
94. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem., Int. Ed., 2012, 51, 3520–3523.
95. Q. Wang, R. Takita, Y. Kikuzaki and F. Ozawa, J. Am.Chem. Soc., 2010, 132, 11420–11421
96. S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927−1932.
97. T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc., 2002, 124, 5286-5287
98. A. E. Rudenko, C. A. Wiley, S. M. Stone, J. F. Tannaci, B. C.Thompson, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3691–3697.
99. Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro. Lett. 2012, 1, 67–70.
100. K. Okamoto, J. B. Housekeeper, F. E. Michael, and C, K. Luscombe, Polym. Chem., 2013, 4, 3499–3506
101. J. Zhou, S. Xie, E. F. Amond, M. L. Becker, Macromolecules, 2013, 46 (9), 3391–3394