簡易檢索 / 詳目顯示

研究生: 李淳漢
論文名稱: Synthesis and characterization of cyclopentadithiophene (CPDT)-naphthalene (NDI) push-pull ABA-type oligomers and copolymers
指導教授: 堀江正樹
口試委員: 蘇安仲
游進陽
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 130
中文關鍵詞: conjugated polymern-type materialC-H direct arylation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis presents the synthesis, characterization, and device performance of a
    series of cyclopentadithiophene (CPDT)-naphthalene (NDI) donor-acceptor (D-A)
    ABA-type oligomers and copolymers. These oligomers composed of
    CPDT-NDI-CPDT unit with various alkyl chains are successfully synthesized via
    direct arylation using palladium complex catalyst. The corresponding copolymers are
    synthesized by oxidative polymerization using FeCl3. All of oligomers and
    copolymers are systematically characterized and analyzed by gel permeation
    chromatography (GPC), 1H NMR and UV-vis-NIR absorption spectroscopies, cyclic
    voltammetry (CV), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and
    differential scanning calorimetry (DSC). GPC measurement shows that these
    polymers are of relatively high molecular weight, Mn = 21800-76000. These
    copolymers show deep-red absorption including near-infrared region (up to 1100 nm)
    due to their quite narrow bandgap. Impressively, the electrochemical property of the
    resulting copolymers exhibits lowest unoccupied molecular orbital (LUMO) at about -
    3.7 eV, which has been considered as the favorable level as n-type materials for use in
    organic photovoltaic devices (OPVs).
    These copolymers exhibit only n-type property giving the highest electron
    mobility of 3.7 x 10-4 cm2 V-1 s-1 in organic field-effect transistor because of its strong
    intermolecular interaction. On the other hand, the copolymer with highly soluble
    branched alkyl chain shows the highest power conversion efficiency of 0.25% in
    organic photovoltaic device.
    To investigate the versatile reactivity of C-H direct arylation, the copolymers
    composed of above unit with benzothiadiazole, thiophene, or bithiophene are also
    II
    synthesized by direct arylation polymerization. All polymers have higher molecular
    weight (Mn = 18000-52000) than the alternative polymers of dibromo-NDI and CPDT
    obtained from similar reaction condition. The optical and electrochemical properties
    of these polymers are measured by UV-vis-NIR spectra, 1H-NMR, GPC and CVs.


    Table of content Abstract I Table of content III Chapter 1. Introduction and purpose 1 1.1 Introduction 1 1.2 Organic semiconductors 1 1.3 Charge transport in organic semiconductors 4 1.3.1 P-type organic semiconductors 5 1.3.2 Ambipolar semiconductors 9 1.4 Application of conjugated polymers 11 1.4.1 Organic field effect transistors 11 1.4.2 Organic photovoltaics 16 1.5 Structure and property of conjugated polymers 20 1.6 Synthesis of conjugated polymers 25 1.7 Aim of this work 33 Chapter 2. Synthesis and Characterization of ABA Type Copolymers Comprising of Cyclopentadithiophene and Naphthalenediimide 34 2.1 Introduction 34 2.2 Synthesis 38 2.2.1 Synthesis of monomers 38 2.2.2 Synthesis of polymers 51 2.3 Optical and electrochemical properties 54 2.4 Thermal properties 65 2.6 Device characteristics of organic field effect transistors and organic photovoltaics 66 Chapter 3. Synthesis and Characterization of AB alternative copolymers by C-H direct arylation 74 3.1 Introduction 74 3.2 Synthesis of polymers 75 3.3 Optical and electrochemical properties 79 Chapter 4. Conclusions and Outlook 85 Chapter 5: Experimental section 87 5.1 General Procedures 87 5.2 Synthesis of cyclopentadithiophene (CPDT) 88 5.2.1 Bis(2-iodothiophen-3-yl) methanol (1) 88 5.2.2 Bis(2-iodothiophen-3-yl)methanone (2) 89 5.2.3 Cyclopenta[2,1-b;3,4-b']dithiophen-4-one (3) 89 5.2.4 4H-Cyclopenta[2,1-b;3,4-b']dithiophene (4) 90 5.2.5 4,4-bis(n-hexadecyl)cyclopenta[2,1-b;3,4-b']dithiophene (5a) 90 5.2.6 4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b']dithiophene (5b) 91 5.3 Synthesis of Naphthalenediimide (NDI) 93 5.3.1 2,6-Dibromonaphthalene-1,4,5,8-tetracarboxydianhydride (6) 93 5.3.2 N,N’-bis(n-hexadecyl)-2,6-dibromo-1,4,5,8-naphthalene diimide (7a) 94 5.3.3 N,N’-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalene diimide (7b) 95 5.4 Synthesis of monomers 96 5.4.1 CPDT-NDI-CPDT 96 5.5 Synthesis of polymers 100 5.5.1 P(CPDT-NDI-CPDT) 100 5.5.2 P(CPDT-NDI-CPDT-BT) 102 Reference 105 Appendix 112

    1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Physical Review Letters. 1977, 39, 1098
    2. H. Sirringhaus, Adv. Mater. 2005, 17, 2411.
    3. A. Facchetti, Mater. Today. 2007, 10, 28.
    4. X. W. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
    5. D. J. Gundlach, J. A. Nichols, L. Zhou, T. N. Jackson, Appl. Phys. Lett. 2002, 80, 2925.
    6. C. Reese, W. J. Chung, M.-m. Ling, M. Roberts, Z. Bao, Appl. Phys. Lett. 2006, 89, 202108.
    7. Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169
    8. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
    9. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
    10. D. M. deLeeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
    11. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao,; Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
    12. J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11331.
    13. D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, J. T. Carey, Chem. Mater. 2008, 20, 7486
    14. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121.
    15. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. d. Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
    16. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Gunes, N. S. Sariciftci, R. Schwodiauer, S. Bauer, J. Appl. Phys. 2005, 97, 083714.
    17. A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13656.
    18. H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
    19. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
    20. T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315
    21. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, Nat. Mater. 2003, 2, 678.
    22. Z. Chen, M. J. Lee, R. Shahid Ashraf, Y. Gu, S. Albert-Seifried, M. Meedom Nielsen, B. Schroeder, T. D. Anthopoulos, M. Heeney, I. McCulloch and H. Sirringhaus, Adv. Mater., 2012, 24, 647–652.
    23. G. Horowitz, Adv. Mater. 1998, 10, 365.
    24. Z. Bao, J. A. Rogers, H. E. J. Katz, Mater. Chem. 1999, 9, 1895.
    25. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    26. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
    27. B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
    28. C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bre´das, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
    29. Z. Bao, J. Locklin, Organic Field-Effect Transistors, CRC Press: Taylor & Francis Group, 2007
    30. J. Cornil, J. L. Bredas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791
    31. F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394.
    32. C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    33. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 1995, 270, 1789
    34. J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res., 2009, 42, 1700
    35. D. Venkataraman, S. Yurt, B. H. Venkatraman, N. Gavvalapalli, J. Phys. Chem. Lett. 2010, 1, 947–958
    36. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
    37. L. Huo, L. Ye, Y. Wu, Z. Li, X. Guo, M. Zhang, S. Zhang, J. Hou, Macromolecules 2012, 45, 6923
    38. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
    39. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
    40. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science. 317, 222 (2007)
    41. G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153.
    42. A. Facchetti, Chem. Mater. 2011, 23, 733–758
    43. Sista, S. et al. Adv. Mater. 2010, 22, 380.
    44. U. Salzner, J. B. Lagowski, P.G. Pickup, R.A. Poirier, Synth Met 1998, 96, 177.
    45. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868
    46. McCullough RD, Ewbank PC. Head-to-tail coupled poly(3-alkylthiophene) and its derivatives. In: Skotheim TA, Elsenbaumer RL, Reynolds JR, editors. Handbook of conducting polymers. 2nd ed. New York: Marcel Dekker; 1998. p. 225.
    47. E. E. Havinga, W. ten Hoeve, H. Wynberg, Polym Bull. 1992, 29, 119.
    48. G. Brocks, A. Tol, J. Phys. Chem., 1996, 100, 1838.
    49. T.J. Prosa, M.J. Winokur, J. Moulton, P. Smith, A.J. Heeger, Macromolecules. 1992, 25, 4364.
    50. N. Miyaura, Cross-Coupling Reactions: A Practical Guide, Springer, New York, 2002.
    51. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457
    52. M. Sato, N. Miyaura, A. Suzuki, Chem. Lett. 1989, 1405
    53. R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461
    54. J. K. Stille, Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
    55. D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
    56. Z. Bao, W. K. Chan, L. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
    57. P. Espinet, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43, 4704 – 4734
    58. D. J. Schipper, Keith Fagnou, Chem. Mater. 2011, 23, 1594–1600
    59. L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792
    60. M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496
    61. G. C. Welch, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 4632–4644
    62. G. L. Gibson, T. M. McCormick, D. S. Seferos, J. Am. Chem. Soc. 2012, 134, 539
    63. J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130
    64. S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324
    65. A. Facchetti, Chem. Mater. 2011, 23, 733
    66. K. Zhang, B. Tieke, J. C. Forgie, F. Vilela, P. J. Skabara, Macromolecules. 2012, 45, 743
    67. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15
    68. Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
    69. A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A, B. Holmes, Chem. Rev. 2009, 109, 897–1091
    70. H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607−632
    71. P. T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 2011, 23, 456–469
    72. P. Coppo, M. L. Turner, J. Mater. Chem. 2005, 15, 1123
    73. U. Asawapirom, U. Scherf, Macromol. Rapid. Commun. 2001, 22, 746.
    74. A. Kraak, A. K. Wiersma, P. Jordens, H. Wynberg, Tetrahedron. 1968, 24, 3381.
    75. G. Zotti, G. Schiavon, A. Berlin, G. Fontana, G. Pagani, Macromolecules. 1994, 27, 1938
    76. S. Wang, M. Kappl, I. Liebewirth, M. Müller, K. Kirchhoff, W. Pisula, K. Müllen, Adv. Mater. 2012, 24, 417.
    77. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater., 2007, 6, 497.
    78. S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, J. Am. Chem. Soc., 2012, 134, 14932
    79. X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem. Mater. 2012, 24, 1434
    80. X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
    81. H. Vollmann, H. Becker, M. Corell, H. Streeck, Liebigs Ann. Chem., 1937, 531, 1.
    82. L. L. Miller, K. R. Mann, Acc. Chem. Res. 1996, 29, 417.
    83. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature. 2000, 404, 478–481.
    84. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, Nature. 2009, 457, 679.
    85. E. Ahmed, G. Q. Ren, F. S. Kim, E. C. Hollenbeck, S. A. Jenekhe, Chem. Mater. 2011, 23, 4563
    86. M. Horie, J. Kettle, C. Y. Yu, L. A. Majewski, S. W. Chang, J. Kirkpatrick, S. M. Tuladhar, J. Nelson, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2012, 22, 381.
    87. M. B. Kim, D. W. Dixon, J. Phys. Org. Chem. 2008, 21 731
    88. M. R. Andersson, D. Selse, M. Berggren, H. Jarvinen, T. Hjertberg, O. Inganas, O. Wennerstrom and J.-E. Osterholm, Macromolecules. 1994, 27, 6503
    89. M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Adv. Energy Mater. 2012, 2, 369
    90. M. M. Durban, P. D. Kazarinoff, C. K. Luscombe, Macromolecules. 2010, 43, 6348
    91. K. Yamazaki , J. Kuwabara , T. Kanbara, Macromol. Rapid Commun. 2013, D, 69−73
    92. H. Zhao, C. Y. Liu, S. C. Luo, B. Zhu, T. H. Wang, H. F. Hsu, H. h. Yu, Macromolecules 2012, 45, 7783−7790
    93. P. Berrouard, A. Najari, A. Pron, D. Gendron, P. Morin, J. Pouliot, J. Veilleux, M. Leclerc, Angew. Chem., Int. Ed. 2012, 51, 2068.
    94. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem., Int. Ed., 2012, 51, 3520–3523.
    95. Q. Wang, R. Takita, Y. Kikuzaki and F. Ozawa, J. Am.Chem. Soc., 2010, 132, 11420–11421
    96. S. W. Chang, H. Waters, J. Kettle, Z. R. Kuo, C. H. Li, C. Y. Yu, M. Horie, Macromol. Rapid Commun., 2012, 33, 1927−1932.
    97. T. Okazawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc., 2002, 124, 5286-5287
    98. A. E. Rudenko, C. A. Wiley, S. M. Stone, J. F. Tannaci, B. C.Thompson, J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3691–3697.
    99. Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, T. Kanbara, ACS Macro. Lett. 2012, 1, 67–70.
    100. K. Okamoto, J. B. Housekeeper, F. E. Michael, and C, K. Luscombe, Polym. Chem., 2013, 4, 3499–3506
    101. J. Zhou, S. Xie, E. F. Amond, M. L. Becker, Macromolecules, 2013, 46 (9), 3391–3394

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE