簡易檢索 / 詳目顯示

研究生: 曾俊智
Tseng, Chun-Chih
論文名稱: 可調變垂直磁異向性亞鐵磁絕緣體銩鐵石榴石薄膜的濺鍍成長及磁化翻轉研究
Sputtering Growth and Magnetization Switching Studies of Ferrimagnetic Insulator Thulium Iron Garnet Films with Tunable Perpendicular Magnetic Anisotropy
指導教授: 郭瑞年
Kwo, Raynien
洪銘輝
Hong, Minghwei
口試委員: 李尚凡
Lee, Shang-Fan
徐斌睿
Hsu, Pin-Jui
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 94
中文關鍵詞: 磁性絕緣體銩鐵石榴石垂直磁異向性磁化翻轉濺鍍
外文關鍵詞: magnetic insulator, thulium iron garnet, perpendicular magnetic anisotropy, magnetization switching, sputtering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建立銩鐵石榴石Tm3Fe5O12薄膜的成份檢測,以用來調查薄膜成份以及長晶參數的關聯和最佳化Tm3Fe5O12薄膜。根據一系列的成分分析,我們為第一個團隊報導使用離軸濺鍍的方式成功成長高品質的Tm3Fe5O12薄膜。此Tm3Fe5O12薄膜除了擁有非常平整的表面和優異的結晶性,也展現出我們期待的垂直磁異向性。從鐵磁共振的譜形可以得知我們薄膜的共振半高波寬小於Tm3Fe5O12塊材的數值,我們也使用變頻鐵磁共振第一次報導Tm3Fe5O12薄膜的磁性阻尼係數:在垂直外場下為0.133,在平行膜面外場下為0.146。除此之外,我們探討不同Tm3Fe5O12成分對於薄膜的結構和磁性性質的影響: 我們發現垂直膜面的晶格常數及平行膜面的應變和薄膜中的Tm和Fe比例有線性的關係;我們進一步的展示利用調變薄膜的成分可以控制薄膜的磁性性質,包含飽和磁化強度和矯頑磁場,其中特別的是我們可以靠調變薄膜成分來提升薄膜的應變,使得垂直磁異向場增強為170%。
    為了有效利用Tm3Fe5O12垂直磁異向性和電性絕緣的特性,我們執行Pt/ Tm3Fe5O12的電流引致的磁化翻轉研究。我們檢測在Pt及Tm3Fe5O12的介面中擁有優異的自旋傳輸性質,而自旋混合電導的實部和虛部被量測為1.1×1015 Ω-1m-2 和1.2×1014 Ω-1m-2。而高效率的力矩效率被決定為 97±0.1 Oe 每1.88×106 A/cm2電流密度。當中最重要的是此磁化翻轉過程只需要使用2.5×106 A/cm2的低電流密度和5 Oe極小的外加平行膜面磁場即可達成,小於其他團隊已報導的數值,而這個原因可能是來自於我們調控薄膜成分來降低Tm3Fe5O12薄膜的矯頑磁場,或是說控制薄膜的垂直磁異向性強度,進而降低翻轉磁化所需的電流密度。
    我們的工作提供Tm3Fe5O12薄膜濺鍍成長和材料性質關鍵性的研究,並展示Pt/ Tm3Fe5O12高效率的磁化翻轉實驗,更重要的是我們對於Tm3Fe5O12薄膜磁性性質的調變可以用來使磁化翻轉的電流密度進一步的降低,支持我們離軸濺鍍成長的Tm3Fe5O12薄膜成為對於自旋電子學應用的重要材料。


    In this work, film composition analysis was established to study the relation of the film composition and growth parameters for optimization of TmIG films. We were the first group reporting to apply off-axis sputtering to successfully grow high-quality TmIG films on GGG(111) substrates. Sputtered TmIG films possessed the flat surface morphology with the roughness of ~0.2 nm and the excellent crystallinity, and exhibited PMA. Narrow linewidth ΔH of 100 Oe of sputtered TmIG film in the FMR spectrum is comparable to the single crystal bulk value of 135 Oe, and the magnetic damping was first reported to be 0.133 and 0.146 under out-of-plane and in-plane fields. We further investigated the influence of film composition on structural and magnetic properties. Out-of-plane lattice constants and in-plane film tensile strains varied linearly with respect to the Tm/ Fe ratio. Remarkably, we demonstrated the tunability of magnetic properties such Ms and Hc by manipulating the film composition in TmIG films and perpendicular anisotropy field was enhanced by increasing the in-plane tensile film strain, verifying that the magnetostriction effect contributes to this PMA.
    In order to exploit the advantage of PMA and the electrically insulating nature of TmIG films, efficient current-induced magnetization switching in Pt/TmIG via SHE was performed. Excellent spin transport at the interface of Pt and TmIG was characterized with spin mixing conductance real part Gr of 1.1×1015 Ω-1m-2 and imaginary part Gi of 1.2×1014 Ω-1m-2 and high damping-like torque efficiency was determined as 0.97±0.1 Oe per current density jc of 1.88×106 A/cm2. Significantly, the magnetization reversal process by SOT was achieved by a low critical current density jc of 2.5×106 A/cm2 and an exceptionally low in-plane field of 5 Oe, lower than the other reported values. Our low current density can be mainly attributed to the smaller coercive field in the AHE hysteresis loop with a small magnetization in our TmIG films.
    This work provides the vital investigation about sputtered TmIG film properties and sputtering film growth for the magnetic community. Importantly, our demonstration for manipulation of magnetic properties in TmIG was able to reduce the threshold current density for efficient magnetization switching. It supports that our high-quality sputtered TmIG films with tunable magnetic properties provide a new route to tailoring rare earth iron garnet films for spintronic application.

    Abstract i 摘要 iii Acknowledegment v Publication List vii Contents viii List of figures xi List of tables xvi Chapter 1 Introduction 1 1.1 Research related to rare earth iron garnets 1 1.2 Stress-induced perpendicular magnetic anisotropy (PMA) in thulium iron garnet (TmIG) films 3 1.3 TmIG-based hetero-structures 5 1.3.1 Anomalous Hall effect (AHE) in heavy metal (HM)/TmIG and topological insulator (TI)/TmIG 5 1.3.2 Spin-orbit torque (SOT) in HM/TmIG and TI/FM 6 1.4 Motivation 8 Chapter 2 Instrumentations 10 2.1 Growth of TmIG/GGG hetero-structure 10 2.1.1 Off-axis radio frequency (RF) magnetron sputtering 10 2.2 Characterization 12 2.2.1 Atomic force microscopy (AFM) 12 2.2.2 Alternating gradient magnetometer (AGM) 13 2.2.3 Ferromagnetic resonance (FMR) 14 2.2.4 X-ray diffraction (XRD) 16 2.2.5 X-ray photoemission spectroscopy (XPS) 17 2.2.6 Transmission electron microscopy (TEM) 18 2.2.7 Hall measurement 20 2.2.8 Rutherford backscattering spectrometry (RBS) 21 Chapter 3 Growth of TmIG films 22 3.1 Fabrication of TmIG targets 22 3.1.1 Preparation for grinding process 22 3.1.2 Compression of targets 23 3.1.3 Sintering process 24 3.2 GGG(111) substrate preparation and characterization 26 3.2.1 Clean process 26 3.2.2 Surface morphology 26 3.3 TmIG grown on Si(100) and GGG(111) 27 3.3.1 Correlation between film composition and growth parameters 27 3.3.2 Growth 32 3.3.3 Composition analysis 33 3.3.4 Surface morphology 36 3.3.5 Structural characterization 37 3.3.6 Magnetic properties 42 3.4 Calculation of film strain 49 3.5 Extraction of perpendicular anisotropy field (H⊥) 51 3.6 Summary 54 Chapter 4 Current-induced magnetization switching in Pt/TmIG hetero-structures 55 4.1 Pt film growth 55 4.2 Spin mixing conductance (G) at the interface 56 4.3 Harmonic Hall measurement and torque efficiency 59 4.4 SOT-assisted magnetization switching 61 4.5 Discussion 63 4.6 Summary 67 Chapter 5 Conclusion 68 Appendix I Spin pumping in hetero-structures of transferred topological insulator (TI) and ferrimagnetic insulator (FI) 69 Appendix I.1 Motivation 69 Appendix I.2 Film growth and transfer process 71 Appendix I.3 Characterization for transferred Bi2Se3 films 73 Appendix I.3.1 Surface morphology 74 Appendix I.3.2 Structural characterization 74 Appendix I.3.3 Composition analysis 77 Appendix I.3.4 Transport properties 79 Appendix I.4 FMR and spin pumping in transferred (TR) Bi2Se3 films 81 Appendix I.4.1 TR-Bi2Se3/YIG bilayers 81 Appendix I.4.2 TR-Bi2Se3/Au/YIG trilayers 83 Appendix I.5 Summary 90

    [1] J. Nielsen, IEEE Transactions on Magnetics 12, 327-45 (1976).
    [2] P. Hansen, J.-P. Krumme, Thin solid films 114, 69-107 (1984).
    [3] P. Paroli, Thin Solid Films 114, 187-219 (1984).
    [4] H. Chang, P. Li, W. Zhang, T. Liu, A. Hoffmann, L. Deng, M. Wu, IEEE Magnetics Letters 5, 1-4 (2014).
    [5] C. Du, H. Wang, P.C. Hammel, F. Yang, Journal of Applied Physics 117, 172603 (2015).
    [6] M. Onbasli, A. Kehlberger, D. Kim, G. Jakob, M. Kläui, A. Chumak, B. Hillebrands, C. Ross, APL Materials 2, 106102 (2014).
    [7] C. Jermain, H. Paik, S. Aradhya, R. Buhrman, D. Schlom, D. Ralph, Applied Physics Letters 109, 192408 (2016).
    [8] X.-L. Qi, T.L. Hughes, S.-C. Zhang, Physical Review B 78, 195424 (2008).
    [9] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, Z. Fang, Science 329, 61-4 (2010).
    [10] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Science, 1232003 (2013).
    [11] C.-Z. Chang, W. Zhao, D.Y. Kim, H. Zhang, B.A. Assaf, D. Heiman, S.-C. Zhang, C. Liu, M.H. Chan, J.S. Moodera, Nature materials 14, 473 (2015).
    [12] M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka, K. Takahashi, M. Kawasaki, Y. Tokura, Applied Physics Letters 107, 182401 (2015).
    [13] X. Kou, L. Pan, J. Wang, Y. Fan, E.S. Choi, W.-L. Lee, T. Nie, K. Murata, Q. Shao, S.-C. Zhang, Nature communications 6, 8474 (2015).
    [14] F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, Nature 533, 513 (2016).
    [15] M. Li, C.-Z. Chang, B.J. Kirby, M.E. Jamer, W. Cui, L. Wu, P. Wei, Y. Zhu, D. Heiman, J. Li, Physical review letters 115, 087201 (2015).
    [16] C. Lee, F. Katmis, P. Jarillo-Herrero, J.S. Moodera, N. Gedik, Nature communications 7, 12014 (2016).
    [17] P. Wei, F. Katmis, B.A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, J.S. Moodera, Physical review letters 110, 186807 (2013).
    [18] M. Lang, M. Montazeri, M.C. Onbasli, X. Kou, Y. Fan, P. Upadhyaya, K. Yao, F. Liu, Y. Jiang, W. Jiang, Nano letters 14, 3459-65 (2014).
    [19] Z. Jiang, C.-Z. Chang, C. Tang, P. Wei, J.S. Moodera, J. Shi, Nano letters 15, 5835-40 (2015).
    [20] Z. Jiang, C.-Z. Chang, C. Tang, J.-G. Zheng, J.S. Moodera, J. Shi, AIP Advances 6, 055809 (2016).
    [21] W. Liu, L. He, Y. Xu, K. Murata, M.C. Onbasli, M. Lang, N.J. Maltby, S. Li, X. Wang, C.A. Ross, Nano letters 15, 764-9 (2014).
    [22] M. Kubota, A. Tsukazaki, F. Kagawa, K. Shibuya, Y. Tokunaga, M. Kawasaki, Y. Tokura, Applied Physics Express 5, 103002 (2012).
    [23] M. Kubota, K. Shibuya, Y. Tokunaga, F. Kagawa, A. Tsukazaki, Y. Tokura, M. Kawasaki, Journal of Magnetism and Magnetic Materials 339, 63-70 (2013).
    [24] C. Tang, P. Sellappan, Y. Liu, Y. Xu, J.E. Garay, J. Shi, Physical Review B 94, 140403 (2016).
    [25] C. Tang, C.-Z. Chang, G. Zhao, Y. Liu, Z. Jiang, C.-X. Liu, M.R. McCartney, D.J. Smith, T. Chen, J.S. Moodera, Science Advances 3, e1700307 (2017).
    [26] S.R. Yang, K.-H. Chen, C. Chen, C.-N. Wu, C. Tseng, C. Cheng, M. Hong, J. Kwo, Bulletin of the American Physical Society, (2018).
    [27] Y. Fanchiang, K. Chen, C. Tseng, C. Chen, C. Cheng, S. Yang, C. Wu, S. Lee, M. Hong, J. Kwo, Nature communications 9, 223 (2018).
    [28] C.O. Avci, A. Quindeau, C.-F. Pai, M. Mann, L. Caretta, A.S. Tang, M.C. Onbasli, C.A. Ross, G.S. Beach, Nature materials 16, 309 (2017).
    [29] A. Quindeau, C.O. Avci, W. Liu, C. Sun, M. Mann, A.S. Tang, M.C. Onbasli, D. Bono, P.M. Voyles, Y. Xu, Advanced Electronic Materials 3, (2017).
    [30] C.O. Avci, E. Rosenberg, M. Baumgartner, L. Beran, A. Quindeau, P. Gambardella, C.A. Ross, G.S. Beach, Applied Physics Letters 111, 072406 (2017).
    [31] J. Li, G. Yu, C. Tang, Y. Liu, Z. Shi, Y. Liu, A. Navabi, M. Aldosary, Q. Shao, K.L. Wang, Physical Review B 95, 241305 (2017).
    [32] Y. Fan, P. Upadhyaya, X. Kou, M. Lang, S. Takei, Z. Wang, J. Tang, L. He, L.-T. Chang, M. Montazeri, Nature materials 13, 699 (2014).
    [33] Y. Fan, X. Kou, P. Upadhyaya, Q. Shao, L. Pan, M. Lang, X. Che, J. Tang, M. Montazeri, K. Murata, Nature nanotechnology 11, 352 (2016).
    [34] J. Han, A. Richardella, S.A. Siddiqui, J. Finley, N. Samarth, L. Liu, Physical review letters 119, 077702 (2017).
    [35] Y. Wang, D. Zhu, Y. Wu, Y. Yang, J. Yu, R. Ramaswamy, R. Mishra, S. Shi, M. Elyasi, K.-L. Teo, Nature Communications 8, 1364 (2017).
    [36] J. Finley, L. Liu, Physical Review Applied 6, 054001 (2016).
    [37] C.-F. Pai, M. Mann, A.J. Tan, G.S. Beach, Physical Review B 93, 144409 (2016).
    [38] M. Li, W. Cui, J. Yu, Z. Dai, Z. Wang, F. Katmis, W. Guo, J. Moodera, Physical Review B 91, 014427 (2015).
    [39] C. Wu, C. Tseng, K. Lin, C. Cheng, S. Yeh, Y. Fanchiang, M. Hong, J. Kwo, AIP Advances 8, 055904 (2018).
    [40] C. Wu, C. Tseng, Y. Fanchiang, C. Cheng, K. Lin, S. Yeh, S. Yang, C. Wu, T. Liu, M. Wu, Scientific reports 8, 11087 (2018).
    [41] http://www.xtal.iqfr.csic.es/Cristalografia/parte_06_2-en.html
    [42] https://commons.wikimedia.org/wiki/File:Electron_Microscope.png
    [43] http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/Hall.html
    [44] https://www.slideshare.net/seenet/rutherford-backscattering-spectrometry-a-laboratory-didactic-path-about-the-basic-interpretation-models
    [45] http://www.shun-feng.com.tw/index.php?page=prod&id=17
    [46] Y. Sun, Y.-Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider, M. Wu, H. Schultheiss, A. Hoffmann, Applied Physics Letters 101, 152405 (2012).
    [47] T. Yamashita, P. Hayes, Applied surface science 254, 2441-9 (2008).
    [48] D.M. De los Santos, J. Navas, T. Aguilar, A. Sánchez-Coronilla, C. Fernández-Lorenzo, R. Alcántara, J.C. Piñero, G. Blanco, J. Martín-Calleja, Beilstein journal of nanotechnology 6, 605 (2015).
    [49] S. Geller, J. Remeika, R. Sherwood, H. Williams, G. Espinosa, Physical Review 137, A1034 (1965).
    [50] S.A. Manuilov, S. Khartsev, A.M. Grishin, Journal of Applied Physics 106, 123917 (2009).
    [51] T. Miyadai, Journal of the Physical Society of Japan 17, 1899-900 (1962).
    [52] C.E. Patton, Journal of Applied Physics 39, 3060-8 (1968).
    [53] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T. Goennenwein, E. Saitoh, G.E. Bauer, Physical Review B 87, 144411 (2013).
    [54] L. Liu, T. Moriyama, D. Ralph, R. Buhrman, Physical review letters 106, 036601 (2011).
    [55] K. Garello, I.M. Miron, C.O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Nature nanotechnology 8, 587 (2013).
    [56] S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, G.S. Beach, Nature materials 12, 611 (2013).
    [57] O. Lee, L. Liu, C. Pai, Y. Li, H. Tseng, P. Gowtham, J. Park, D. Ralph, R.A. Buhrman, Physical Review B 89, 024418 (2014).
    [58] Q. Shao, C. Tang, G. Yu, A. Navabi, H. Wu, C. He, J. Li, P. Upadhyaya, P. Zhang, S. A. Razavi, Q. L. He, Y. Liu, P. Yang, S. K. Kim, C. Zheng, Y. Liu, L. Pan, R. Lake, X. Han, Y. Tserkovnyak, J. Shi, and K. L. Wang, arXiv:1708.07584v2, (2018).
    [59] Z. Jiang, C.-Z. Chang, M.R. Masir, C. Tang, Y. Xu, J.S. Moodera, A.H. MacDonald, J. Shi, Nature communications 7, 11458 (2016).
    [60] K. Kondou, R. Yoshimi, A. Tsukazaki, Y. Fukuma, J. Matsuno, K. Takahashi, M. Kawasaki, Y. Tokura, Y. Otani, Nature Physics 12, 1027 (2016).
    [61] H. Wang, J. Kally, J.S. Lee, A. Richardella, S. Kempinger, Y. Pan, E. Kamp, N. Samarth, T. Liu, H. Chang, editors. Probing the Spin Transfer Efficiency at Topological Insulator/Ferromagnetic Insulator Interfaces. APS Meeting Abstracts; 2016.
    [62] H. Wang, J. Kally, J.S. Lee, T. Liu, H. Chang, D.R. Hickey, K.A. Mkhoyan, M. Wu, A. Richardella, N. Samarth, Physical review letters 117, 076601 (2016).
    [63] C.D. Spataru, F. Léonard, Physical Review B 90, 085115 (2014).
    [64] L.A. Walsh, C.M. Smyth, A.T. Barton, Q. Wang, Z. Che, R. Yue, J. Kim, M.J. Kim, R.M. Wallace, C.L. Hinkle, The Journal of Physical Chemistry C 121, 23551-63 (2017).
    [65] N. Bansal, M.R. Cho, M. Brahlek, N. Koirala, Y. Horibe, J. Chen, W. Wu, Y.D. Park, S. Oh, Nano letters 14, 1343-8 (2014).
    [66] F. Yang, A. Taskin, S. Sasaki, K. Segawa, Y. Ohno, K. Matsumoto, Y. Ando, ACS nano 9, 4050-5 (2015).
    [67] M. Isasa, E. Villamor, L.E. Hueso, M. Gradhand, F. Casanova, Physical Review B 91, 024402 (2015).
    [68] V. Vlaminck, J.E. Pearson, S.D. Bader, A. Hoffmann, Physical Review B 88, 064414 (2013).
    [69] M. Obstbaum, M. Härtinger, H. Bauer, T. Meier, F. Swientek, C. Back, G. Woltersdorf, Physical Review B 89, 060407 (2014).
    [70] C.-H. Chang, T.-R. Chang, H.-T. Jeng, NPG Asia Materials 8, e332 (2016).
    [71] S. Shi, A. Wang, Y. Wang, R. Ramaswamy, L. Shen, J. Moon, D. Zhu, J. Yu, S. Oh, Y. Feng, arXiv preprint arXiv:180103689, (2018).

    QR CODE