簡易檢索 / 詳目顯示

研究生: 古什尼
Gude, Srinivas
論文名稱: 應用多重延遲訊號消除濾波器於電網嚴峻情況下之先進鎖相迴路技術
ADVANCED PHASE-LOCKED LOOPS BASED ON MULTIPLE DELAYED SIGNAL CANCELLATION FILTERS UNDER ADVERSE GRID CONDITIONS
指導教授: 朱家齊
Chu, Chia-Chi
口試委員: 吳財福
WU, TSAI-FU
洪穎怡
Hong, Yin–Yi
賴炎生
Lai, Yen-Shin
吳有基
Wu, Yu-Chi
林法正
Lin, Faa-Jeng
連國龍
Lian, Kuo-Lung
邱煌仁
Chiu, Huang-Jen
張文恭
Chang, Gary W
學位類別: 博士
Doctor
系所名稱: 教務處 - 跨院國際博士班學位學程
International Intercollegiate PhD Program
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 101
中文關鍵詞: 併網技術相角頻率振福諧波串連延遲訊號消除多重延遲訊號消除鎖相迴路
外文關鍵詞: Grid synchronization, Phase-angle, Frequency, Amplitude, Harmonics, Cascaded delayed signal cancellation (CDSC), Multiple delayed signal cancellation (MDSC), Phase-locked loops (PLLs)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於分散式再生能源發電系統併網技術中,電網併接點之三相電壓振幅、相角、與頻率,是同步併網控制的關鍵資訊。目前最廣泛使用之方式為鎖相迴路技術。理論上,同步參考框之鎖相迴路與增強型鎖相迴路技術,因為其結構簡單且發展已趨完備,已經廣泛應用。但隨著電網中電力電子式負載的激增,電網之電壓因此會產生嚴重之三相不平衡與諧波失真等現象。於此嚴峻的電網電壓條件下,鎖相迴路的頻寬必須增加,以改善其濾波能力,並須確保系統之快速動態響應。鎖相迴路使用的濾波器,可內嵌於鎖相迴路中,或前饋於鎖相迴路之輸入信號。本文提出一種用於鎖相迴路之新穎濾波技術,稱為多重延遲訊號消除法,可用於產生(i)靜止參考框中電網電壓的基頻正序分量,(ii)同步參考框中電網電壓的直流分量,與(iii)單相系統之選擇性諧波成分。多重延遲訊號消除濾波器具有更大的設計彈性,可消除不需要的諧波成分。與近來所提出之串聯延遲信號消除濾波器相較,可減少延遲時間,並且同時兼具並聯延遲信號消除濾波器與移動平均濾波器的優點,並減少的數位實現下之計算複雜度。本文探討設計多重延遲訊號消除濾波器,應用於再生能源發電系統併網之鎖相迴路技術,包含以下四項:(i)三相同步參考框鎖相迴路的前饋濾波形式多重延遲訊號消除濾波器設計,(ii)三相同步參考框鎖相迴路之遞迴型式多重延遲訊號消除濾波器設計,(iii)三相增強型鎖相迴路之內嵌式多重延遲訊號消除濾波器設計,與(iv)增強型鎖相迴路之單相多重延遲訊號消除濾波器設計。最後以即時模擬與實驗室硬體平台,進行模擬驗證其準確性。與其他進階鎖相迴路相較,所提出多重延遲訊號消除濾波器,可提供較快速與精準的動態響應。


    The phase angle, frequency, and amplitude of grid voltage are the crucial information for the control and grid synchronization of grid-connected power electronic systems utilized in distributed generators. The conventional approach for the estimation of phase angle, frequency, and amplitude is to explore phase-locked loop techniques. In theory, synchronous reference frame (SRF) phase-locked loop (PLL) and enhanced phase-locked loop (EPLL) are the most conventional and widely used in power engineering applications because of their simple structure and robust features for digital implementation. With the proliferation of power electronic loads in the power grid, the grid voltage has unbalances and harmonic distortions. Under these severe conditions of the grid voltage, the bandwidth of the PLLs has to compromise between filtering capability and dynamic responses. The PLL dynamic performance can be improved by using in-loop filter or pre-filter. This thesis proposes novel filtering techniques based on multiple delayed signal cancellation (MDSC). These filtering techniques can be utilized for extracting (i) fundamental frequency positive sequence (FFPS) component of the grid voltage in stationary reference frame, (ii) dc component of
    the grid voltage in the synchronous reference frame, and (iii) selected harmonic component in single phase applications. The proposed MDSC filters have more flexibility to configure the lowest undesired harmonics and hence they can have less delay time when compared to the cascaded delayed signal cancellation (CDSC) filters for the same harmonic elimination capability. These filters can have combined advantages of both CDSC filters and moving average filters (MAFs) in their recursive implementations. For example, similar to CDSC filters, the MDSC filters can have more flexibility to configure the delay time introduced by the filters. In addition, similar to MAFs, the MDSC filters can provide less computational burden. In this thesis, advanced PLLs based on MDSC filters are proposed. They are (i) pre-filtered direct-form MDSC filters based three-phase SRF-PLL, (ii) recursive-form MDSC filters based three-phase SRF-PLLs, (iii) in-loop MDSC filters based three-phase enhanced PLL, and (iv) single-phase MDSC filters based enhanced PLL. Experimental verifications demonstrate the effectiveness of the proposed PLLs and provide good dynamic responses when compared to the recent advanced PLLs.

    1 Introduction 1 1.1 Background and Motivation 1 1.2 MDSC filters for the SRF-PLL as a pre-filtering stage 3 1.3 Recursive-form MDSC filters based SRF-PLL 4 1.4 MDSC filters based three-phase EPLL 5 1.5 Single-phase MDSC filters based EPLL 6 2 MDSC Filters and Their Application as a Pre-filtering Stage to SRF-PLL 2.1 DSC, GDSC, and MDSC 8 2.1.1 Space Phasor Notations 8 2.1.2 DSC and GDSC 10 2.1.3 MDSC 12 2.1.4 Extensions 17 2.1.5 Relationships with Other Operators 18 2.1.6 Discrete Implementations 19 2.2 MDSC-Based PLLs 20 2.2.1 PI Control Design 22 2.2.2 Frequency Adaptation Scheme 23 2.2.3 Stability of the MDSC-FF 26 2.2.4 Stability of the Frequency Adaptive MDSC Pre-Filtered PLL 27 2.3 Experimental Verifications 29 2.4 Discussion 34 3 Recursive-form MDSC Filters Based SRF-PLLs 35 3.1 Recursive-Form of MDSC Operators 35 3.1.1 Grid Voltage Representations 35 3.1.2 Recursive Forms of dq-Frame MDSC Operators 37 3.1.3 Recursive Forms of ab -Frame MDSC Operators 39 3.1.4 Complexity of Recursive-Form MDSC Operators 41 3.2 Pre-filtered recursive-form MDSC-PLL 41 3.2.1 Corrections in amplitude and phase-angle of the recursive-form MDSC-PLL 42 3.2.2 Stability Analysis and Design Guidelines 44 3.3 In-Loop Filtered Recursive-Form MDSC-PLL 46 3.3.1 Approximated Transfer Function of dq-Frame MDSC Operators 46 3.3.2 Loop Filter Design 47 3.4 Experimental Verifications 49 3.5 Discussion 52 4 MDSC Filters Based Three-phase Enhanced PLL 4.1 Overview of 3P-EPLLs 54 4.1.1 3P-EPLL 55 4.1.2 CDSC Filter-Based 3P-EPLL 57 4.2 MDSC-Filter-Based 3P-EPLL 60 4.2.1 MDSC Filters 61 4.2.2 Features of MDSC Filters 63 4.2.3 Recursive-Form Implementation of MDSC filter 66 4.2.4 MDSC-3P-EPLLs 67 4.3 Simulations and Experimental Verifications 73 4.3.1 Simulation results 76 4.3.2 Experimental Results 77 4.4 Discussion 80 5 Single-phase MDSC Filters and Their Application to Enhanced PLL 5.1 Single phase MDSC Filters 81 5.1.1 MDSC Operations 81 5.1.2 Special Feature 84 5.1.3 Comparisons With Other Operators 85 5.2 Applications to Enhance PLLs 86 5.3 Experimental Verifications 88 5.3.1 Test Case I: Voltage sag distortions 90 5.3.2 Test Case II: Phase jump distortions 90 5.3.3 Test Case III: Frequency jump with voltage sag 90 5.4 Discussion 91 6 Conclusions 92 References 94

    [1] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol.53, no.5, pp.1398-1409, Oct. 2006.

    [2] Dragan Jovcic, “Phase locked loop system for FACTS,” IEEE Trans. Power sys., vol.18, no.3, pp.1116-1124, Aug. 2003.

    [3] J. Z. Zhou, H. Ding, S. Fan, Y. Zhang, and A. M. Gole, “Impact of short-circuit ra- tio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter,” IEEE Trans.Power Del., vol.29, no.5, pp.2287-2296, Oct. 2014.

    [4] R. M. S. Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Trans. Ind. Electron., vol.55, no.8, pp.2923-2932, Aug. 2008.

    [5] V. Kaura, and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE Trans. Ind. Appl., vol.33, no.1, pp.58-63, Jan./Feb. 1997.

    [6] S. Y. Chung, “A Phase Tracking System for Three Phase Utility Interface Inverters,”IEEE Trans. Power Electron., vol.15, no.3, pp.431-438, May 2000.

    [7] S. Golestan and J. M. Guerrero, “Conventional synchronous reference Frame phase- locked loop is an adaptive complex filter,” IEEE Trans. Ind. Electron., vol.62, no.3,pp.1679-1682, Mar. 2015.

    [8] M. Karimi-Ghartemani, “A novel three-phase magnitude-phase-locked loop system,” IEEE Trans. Circuits Syst. I, vol.53, no.8, pp.1792-1802, Aug. 2006.

    [9] M. Karimi-Ghartemani, “Linear and pseudolinear enhanced phased-locked loop (EPLL) structures,” IEEE Trans. Ind. Electron., vol.61, no.3, pp.1464-1474, Mar.2014.

    [10] Masoud Karimi Ghartemani, Enhanced Phase-Locked Loop Structures for Power and Energy Applications, Hoboken, NJ, USA: IEEE/Wiley, 2014.

    [11] F. Wu, L. Zhang, and J. Duan, “A new two-phase stationary-frame-based enhanced PLL for three-phase grid synchronization,” IEEE Trans. Circuits Sys. II Exp. Briefs, vol.62, no.3, pp.1464-1474, Mar. 2015.

    [12] S. Golestan, J. M. Guerrero and Juan. C. Vasquez, “Three-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894-1907, March 2017.

    [13] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Ind. Electron., vol. 22, no. 2, pp. 584-592, March 2007.

    [14] L. Hadjidemetriou, E. Kyriakides, and Frede Blaabjerg, “A robust synchronization to enhance the power quality of renewable energy systems,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4858-4868, Aug. 2015.

    [15] W. Li, X. Ruan, C. Bao, D. Pan, and X. Wang , “Grid synchronization systems of three-phase grid-connected power converters: A complex-vector-filter perspective,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1855-1870, Apr. 2014.

    [16] C. Rajasekharareddy, N. A. Sayari, K. A. Hosani, and A. R. Beig, “Control scheme for grid-tied distributed generation inverter under unbalanced and distorted utility conditions with power quality ancillary services,” IET Renewable Power Generation, vol. 10, no. 2, pp. 140-149, 2016.

    [17] P. Rodriguez, A. Luna, I. Etxeberría, J. R. Hermoso, and R. Teodorescu, “Multiple second order generalized integrators for harmonic synchronization of power convert- ers ,” Proc. IEEE Energy Convers. Congr. Expo., pp. 2239-2246, Terrassa, Spain, Sept. 2009.

    [18] X. Guo, W. Wu, and Z. Chen, “Multiple-complex coefficient-filter-based phase- locked loop and synchronization technique for three-phase grid interfaced convert- ers in distributed utility networks ,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp.1194-1204, Apr. 2011.

    [19] F. G. Espín, E. Figueres, and G. Garcerá, “An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2718-2731, Jun. 2012.

    [20] S. Golestan, J. M. Guerrero, J. C. vasquez, A. M. Abusorrah, and Y. Al-Turki, “Research on variable-length transfer delay and delayed signal cancellation nased PLLs,” IEEE Trans. Power Electron., Early Access, 2017.

    [21] E. Robles, S. Ceballos, J. Pou, J. L. Martin, J. Zaragoza, and P. Ibanez, “Variable- frequency grid-sequence detector based on a quasi-ideal lowpass filter stage and a phase-locked loop,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2552-2563, Oct. 2010.

    [22] F. A. S. Neves, H. E. P. de Souza, F. Bradaschia, M. C. Cavalcanti, M. Rizo, and F. J.Rodríguez, “A space-vector discrete Fourier transform for unbalanced and distorted three-phase signals,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2858-2867, Aug. 2010.

    [23] F. A. S. Neves, M. C. Cavalcanti, H. E. P. de Souza, F. Bradaschia, E. J. Bueno and M. Rizo, “A generalized delayed signal cancellation method for detecting fundamental- frequency positive-sequence three-phase signals,” IEEE Trans. Power Del., vol. 25, no. 3, pp. 1816-1825, Jul. 2010.

    [24] Y. F. Wang, Y. W. Li, “Grid synchronization PLL based on cascaded delayed signal

    cancellation,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 1987-1997, Jul. 2011.

    [25] S. Golestan, F. D. Freijedo, A. Vidal, A. G. Yepes, J. M. Guerrero, and J. Doval- Gandoy, “An Efficient Implementation of Generalized Delayed Signal Cancellation PLL,” IEEE Trans. on Power Electron., vol. 31, no. 2, pp. 1085-1094, Feb. 2016.

    [26] J. Wang, J. Liang, F. Gao, L. Zhang, and Z. Wang , “A method to improve the dynamic performance of moving average filter-based PLL,” IEEE Trans. Power Electron., vol.30, no. 10, pp.5978-5990, Oct. 2015.

    [27] Y. Li, D. Wang, W. Han, S. Tan, and X. Guo, “Performance improvement of Quasi- Type-1 PLL by using a complex notch filter,” IEEE Access, vol. 4, pp. 6272-6282, Oct. 2016.

    [28] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “A robust and fast synchronization technique for adverse grid conditions,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3188-3194, Apr. 2017.

    [29] S. Golestan, M. Ramezani, J. M. Guerrero, and M. Monfared, “dq-frame cascaded de- layed signal cancellation based PLL: analysis, design, and comparison with moving average filter-based PLL,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1618-1632, Mar. 2015.

    [30] Q. Huang, and K. Rajashekara, “An improved delayed signal cancellation PLL for fast grid synchronization under distorted and unbalanced grid conditions,” IEEE Trans. Ind. Appl., vol. 53,
    no.5, pp.4985-4997, Sep./Oct. 2017.

    [31] M. Ramezani, S. Golestan, S. Li, and J. M. Guerrero, “A simple approach to enhance the performance of complex-coefficient filter-based PLL in grid-connected applications,” IEEE Trans. Ind. Electron., vol. 65, no.6, pp.5081-5085, Jun. 2018.

    [32] S. Gude, and C. C. Chu, “Performance enhancement of pre-filtered multiple delayed signal cancellation based PLL ,” Proc. IEEE Power and Energy Society General Meet- ing, Chicago, IL, USA, Jul. 2017, pp.1-5.

    [33] S. Gude, and C. C. Chu, “Three-phase grid synchronization PLL using multiple de- layed signal cancellation under adverse grid voltage conditions,” 2017 IEEE Industry Applications Society Annual
    Meeting, pp.1-8, Cincinnati, OH, USA, Oct. 2017.

    [34] M. Mirhosseini, J. Pou, V. G. Agelidis, E. Robles, and S. Ceballos, “A three-phase frequency-adaptive phase-locked loop for independent single-phase operation,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6255-6259, Dec. 2014.

    [35] H. A. Hamed, A. F. Abdou, E. H. E. Bayoumi, and E. E. EL-Kholy, “Frequency adaptive CDSC-PLL using axis drift control under adverse grid condition,” IEEE Trans. Ind. Electron., vol.64, no. 4, pp. 2671-2682, Apr. 2017.

    [36] J. Svensson, M. Bongiorno, and A. Sannino, “Practical implementation of delayed signal cancellation method for phase-sequence separation,” IEEE Trans. Power Del., vol. 22, no. 1, pp. 18-26, Jan. 2007.

    [37] Y. F. Wang and Y. W. Li, “Analysis and digital implementation of cascaded delayed signal cancellation,” IEEE Trans. on Power Electron., vol.26, no.4, pp.1067-1080, Apr. 2011.

    [38] S. Golestan, M. Ramezani, J. M. Guerrero, and F. D. Freijedo, and M. Monfared, “Moving average filter based phase-locked loops: performance analysis and design guidelines,” IEEE Trans. Power Electron., vol.29, no.6, pp.2750-2763, Jun. 2014.

    [39] S. Golestan, J. M. Guerrero, A. Vidal, A. G. Yepes, J. Doval-Gandoy, “PLL with MAF-based prefiltering stage: small-signal modeling and performance enhancement,” IEEE Trans. Power Electron., vol.31, no.6, pp.4013-4019, Jun. 2016.

    [40] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, and A. Bakhshai, “Derivation and design of in-loop filters in phase-locked loop systems,” IEEE Trans. Instrum. Meas., vol.61, no.4, pp.930-940, Apr. 2012.

    [41] F. Wu, and X. Li, “Multiple DSC filter-based three-phase EPLL for nonideal grid synchronization,” IEEE J. Emerg. sel. Topics Power Electron., vol.5, no.3, pp.1396-1403, Sep. 2017.

    [42] S. Luo, and F. Wu,“Improved two-phase stationary frame EPLL to eliminate effect of input harmonics, unbalance, and DC offsets,” IEEE Trans. Ind. Informat., vol.13, no.6, pp.2855-2863, Dec.2017.

    [43] F. Wu, L. Zhang, and J. Duan, “Effect of adding DC-offset estimation integrators in there-phase enhanced phase-locked loop on dynamic performance and alternative scheme,” IET Power Electron., vol.8, no.3, pp.391-400, Mar. 2015.

    [44] M. Pahlevani, and P. Jain, “A fast DC-bus voltage controller for bidirectional single- phase AC/DC converters,” IEEE Trans. Power Electron., vol.30, no.8, pp.4536-4547, Aug. 2015.

    [45] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Single-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron., vol.32, no.12, pp.9013-9030, Dec.2017.

    [46] M. K. Ghartemani, and M. R. Iravani„ “Robust and frequency-adaptive measurement of peak value,” IEEE Trans. Power Del., vol.19, no.2, pp.481-489, Apr. 2004.

    [47] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, and E. Acha, “Tuning of phase-locked loops for power converters under distorted utility conditions,” IEEE Trans. Ind. Appl., vol.45, no.6,
    pp.2039-2047, Nov./Dec. 2009.

    [48] F. Wu, D. Sun, L. Zhang, and J. Duan, “Influence of plugging DC offset estimation integrator in single-phase EPLL and alternative scheme to eliminate effect of input DC offset and harmonics,” IEEE Trans. Ind. Electron., vol.62, no.8, pp.4823-4831, Aug. 2015.

    [49] Y. F. Wang, Y. W. Li, “A grid fundamental and harmonic component detection method for single-phase systems,” IEEE Trans. Power Electron., vol.28, no.5, pp.2204-2213, May 2013.

    [50] Y. Lu, G. Xiao, X. Wang, F. Blaabjerg, “Grid synchronization with selective harmonic detection based on generalized delayed signal superposition,” IEEE Trans. Power Electron., Early Access, 2017.

    [51] A. Yazdani, and R. Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications, Hoboken, NJ: Wiley, 2010.

    [52] M. Bongiorno, J. Svensson, and A. Sannino, “Effect of sampling frequency and harmonics on delay-based phase-sequence estimation method,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1664–1672, July 2008.

    [53] F. A. S. Neves, H. E. P. de Souza, M. C. Cavalcanti, F. Bradaschia, and E. J. Bueno, “Digital Filters for Fast Harmonic Sequence Component Separation of Unbalanced and Distorted Three-Phase Signals,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp.3847-3859, Oct. 2012.

    [54] H. A. Darwish, and M. Fikri, “Practical considerations for recursive DFT implementation in numerical relays,” IEEE Trans. on Power Del., vol. 22, no. 1, pp. 42-49, Jan. 2007.

    [55] Md. Shamim Reza and Vassilios G. Agelidis, “A robust technique for single-phase grid voltage fundamental and harmonic parameter estimation,” IEEE Trans. Inst. and Meas., vol. 64, no.12, pp.
    3262-3273, Dec. 2015.

    [56] S. Buso and P. Mattavelli, Digital Control in Power Electronics, Seattle, WA, USA: Morgan & Claypool, 2006.

    [57] H. Tian, Y. W. Li, and P. Wang, “Hybrid AC/DC system harmonics control through grid interfacing converters with low switching frequency,” IEEE Trans. Ind. Electron., vol. 65, no.3, pp. 2256-2267, Mar. 2018.

    [58] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 2nd ed, New York: Mc-GrawHill, 2001.

    [59] Y. F. Wang and Y. W. Li, “Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection,” IEEE Trans. Ind. Electron., vol.60, no.4, pp.1452-1463, Apr. 2013.

    [60] R. C. Dorf, and R. H. Bishop, Modern Control Systems, 9th ed. Englewood Cliffs, NJ: Prentice-Hall, 2000.

    QR CODE