研究生: |
蘇展祿 Chan-Lu Su |
---|---|
論文名稱: |
利用近場光學顯微術研究金屬狹縫奈米線和奈米點的近場光學分佈 Study of Near-field Patterns on Metal Slits, Nanowires, and Nanodots by Near-field Scanning Optical Microscopy |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 近場光學 |
外文關鍵詞: | Near-field, Surface plasmon, NSOM, plasmonics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由穿透式近場光學顯微術,當以532 nm 的綠光雷射照射在試片,從基
板由下往上照射,我們將研究光經過金屬結構偶合後的近場光學分佈。
我們製作三種結構用來研究其近場光學分佈,包含金屬微米狹縫,金奈米
線陣列,和金奈米點陣列。就製作金屬微米狹縫,先將57 nm 的金膜直接鍍在
玻璃基板上,再藉由本實驗室成熟的原子力顯微術,施加機械力微影於金膜上,
就成功地製作出單一和多重金微米狹縫。就製作金屬奈米線和點陣列,首先將
單層的PMMA 阻劑旋鍍在石英基板上,接著鍍上18 nm 的金膜,然後施加機械力
微影於PMMA 上,最後lift-off 步驟完成,便可成功製作出奈米線陣列和奈米
點陣列於透明的石英基板上。
於本實驗中,首先將532 nm 綠光照射在透明基板的一方,光穿過基板和其
上方的金屬結構反應後,我們以光纖探針為奈米光學孔徑接收近場光學訊號。
就金屬微米狹縫,於金屬和空氣的介面上,兩種近場光學訊號包含條紋和同心
圓分布被觀察到。條紋狀的分布皆出現於狹縫的兩旁,而無論是未極化或者是
極化光皆有出現。而同心圓的分布則僅在下列三種情況會出現:當TE 極化光照
射在單一狹縫上;當TM 極化光照射在雙狹縫上;當TE 極化光照射在三狹縫上。
就金奈米線陣列而言,於金屬和空氣介面上,近場光學分布被發現干涉條紋的
現象。而且在破碎的金奈米線陣列裡,我們也可以觀察到干涉條紋的近場光學
訊號。然而在金奈米點陣列裡,我們並沒有觀察到近場光學訊號有如同上述的
干涉條紋產生。
By using transmission near-field scanning optical microscopy (NSOM),
near-field optical distributions are studied when green laser source (532 nm) is
illuminated on the substrate side of the sample.
Three types of structures: macroslits, nanowire array and nanodot array, are
fabricated for the study of near-field intensity distributions. The structures of single
and multiple macroslits are made by atomic force microscopy (AFM) nanomachining
on Au-deposited glass substrate with the thickness of 57.05 nm. The structures has
slits with averaged width of 2.72 μm and the period of 10~15 μm. For the fabrication
of nanowire array and nanodot array, PMMA is spincoated on the quartz substrate as
a single layer resist first. Using nanomachining, subsequent Au deposition of 18 nm
thickness, and finally lift-off, nanowire array and nanodot array are fabricated.
By illuminating the sample from the substrate side with the 532 nm green laser
source, the near-field intensity is collected by home-made NSOM fiber probe. For
slits, two types of intensity distributions, namely stripes and concentric circles, on the
air-gold interface are observed. Stripe patterns appear at two locations, inside slit and
metal surface without polarization dependence. Concentric circular patterns which
have 470 nm period, on the other hand, are observed on the air-gold interfaces of the
one-slit structure with transverse electric (TE) polarized light, two-slit structure with
transverse magnetic (TM) polarized light, and three-slit structure with TE polarized
light, respectively. The period of 470 nm is in good agreement with the wavelength of
surface plasmons. For nanowire array, the interference inside array has the same
period of 1μm as structure and outside array is the contributions of scattering of each
gold nanowire plus normal incident intensity. Interference patterns also appeared on
the broken nanowire array due to scattering of metal gap. For nanodot array, however,
near-field intensity distributions don’t show interference pattern.
Reference
[1] E. Ozbay, Science, 311, 189 (2006)
[2] V.M. Shalaev, www.nanohub.org (2007)
[3] R. Zia, J.A. Schuller, A. Chandran, and M.L. Brongersma, Materialstoday, 9, 20
(2006)
[4] H. R□ther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(Springer-Verlag, Berlin, 1988).
[5] J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P.
Goudonnet, Phys. Rev., 64, 045411-1 (2001)
[6] L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julie, V. Mathet, and M. Mortier, Phys.
Rev. Lett., 98, 153902-1 (2007)
[7] S.A. Maier, M.L. Brongersma, and H.A. Atwater, Appl. Phys. Lett., 78, 16 (2001)
[8] http://cobweb.ecn.purdue.edu/~ece695s/
[9] Lord Rayleigh, Philos. Mag., 8, 261 (1879)
[10] A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R.
Dekhter, and E. Ammann, Nature Biotechnology., 21, 31378 (2003)
[11] G. Binnig, H. Rohrere, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982)
[12] E. Abbe, Archiv. F. Mikroshop, 9, 413 (1873)
[13] E.H. Synge, Phil. Mag., 6, 356 (1928)
[14] H. A. Beth, Phys. Rev., 66, 163 (1944)
[15] C. J. Bouwkamp, Rep. Pro. Phys., 17, 35 (1954)
[16] J.A. O’Keefe, J. Opt. Soc. Am., 46, 359 (1956)
[17] E.A. Ash and G. Nicholls, Nature, 237, 510 (1972)
[18] D.W. Pohl, W. Denk, M. Lanz, Appl. Phys., 44, 651 (1984)
[19] A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, Ultramicroscopy, 13,
227 (1984)
[20] R.C. Reddick, R.J. Warmack, and T.L. Ferrell, Phys. Rev., 39, 767 (1989)
[21] E. Betzig, J. K. Trautmann, T.D. Harris, J.S. Weiner, and R.L. Kostelak, Science,
251, 1468 (1991)
[22] E. Betzig, J.K. Trautman, J.S. Weiner, T.D. Harris, and R. Wolfe, Appl. Opt., 31,
4563 (1992)
[23] F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Lett., 65, 1623
(1994)
[24] K. Karrai and R.D. Grober, Appl. Phys. Lett., 66, 1842 (1995)
[25] J. Tominaga, T. Nakano, and N. Atoda, Appl. Phys. Lett., 73, 2078 (1998)
[26] D. Courjon, Near-Field Microscope and Near-Field Optics (Imerial college
press, Singapore,2003)
[27] M.A. Paesler and P.J. Moyer, Near-Field Optics: Thoery, Instrumentation, and
Applications (Wiley, New York, 1996)
[28] B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, J.
Chem Phys., 112, 7761 (2000)
[29] J.M. Vigoureux, F. Depasse, and C. Girard, Appl. Opt., 31, 3036 (1992)
[30] 蔡定平,科儀新知 第二十一卷第五期,17 (2000).
[31] P.K. Wei, H.L. Chou, and W.S. Fann, Opt. Express, 10, 1418 (2002)
[32] P.K. Wei, H.L. Chou, Y.R. Cheng, C.H. Wei, W. Fann, and J.O. Tegenfelt, Opt.
Commun., 253, 198 (2005)
[33] L. Yin, V.K. Vlasko, J. Person, J. M. Hiller, J. Hua, U. Welp, D.E. Brown, and
C.W. Kimball, Nano Lett., 5, 1399 (2005)
[34] E. Devaux, T.W. Abbesen, J.-C. Weeber, and A. Dereux, Appl. Phys. Lett., 83,
4936 (2003)
[35] G. A. Wurtz, J. Hranisavlijevic, and G.P. Wiederrecht, Nano Lett., 3, 1511 (2003)
[36] W. Nomura, T. Yatsui, and M. Ohtsu, Appl. Phys. B, 84, 257 (2006)
[37] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R.
Ausenegg, and J. R. Krenn, Phys. Rev. Lett., 95, 257403 (2005)
[38] A. Degiron, H.J. Lezec, N. Yamamoto, and T. W. Ebessen, Opt. Commun, 239,
61 (2004)
[39] R. Wannemacher, Opt. Commun., 195, 107 (2001)
[40] L. Salomon, F. Grillot, A.V. Zayats, and F. de Fornel, Phys. Rev. Lett., 86, 1110
(2001)
[41] M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev B, 67, 085415-1
(2003)
[42] S.H. Chang, S.K. Gray, and G.C. Schatz, Opt. Express, 13, 3150 (2005)
[43] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature
(London), 391, 667 (1998)
[44] H.J. Lezec and T. Thio, Opti. Exprss, 12, 3629 (2004)
[45] W. Nomura, T. Yatsui, and M. Ohtsu, Proceed. SPIE, 5927, 59270B-1 (2005)
[46]W. Nomura, T. Yatsui, and M. Ohtsu, Appl. Phys. Lett., 86, 181108 (2005)
[47] W.L. Barnes and A. Dereux, and T.W. Ebbesen, Nature, 424, 824 (2003)
[48] J.P. Kottmann, J.P. Martin, O.J.F. Smith, and S. Schultz, Phys. Rev. B, 64, 5420
(2001)
[49] J.-C. Weeber, A. Deraux, C. Girard, J.R. Krenn, and J.P. Goudonett, Phys. Rev. B,
60, 9061 (1999)
[50] J. R. Krenn and J.-C. Weeber, Phil. Trans. R. Soc. Lond. A, 362, 739 (2004)
[51] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Phan, R.
He, and H.J. Choi, Adv. Funct. Mater., 5, 323 (2002)
[52] K.S. Yee, IEEE Trans. Ant. Propagation, 14, 301 (1966)
[53] M. Koopman, A. Cambi, B.I. de Bakkar, B. Joosten, C.G. Figdor, N.F. van Hulst,
M.F. Garcia-Parajo, FEBS Lett, 573, 328690-6 (2004)
[54] F. de Lange, A. Cambi, R. Huijibens, Barbel de Bakker, W. Rensen, M.
Garcia-Parajo, N. van Hulst, and C.G. Figdor, J. Cell Science, 114, 4153 (2001)
[55] E. Betzig and R.J. Chichester, Science, 262, 1422 (1993)
[56] V. Hulst, N.F. Veerman, J.A. Garcia-Parajo, M.F., and L. Kuipers, J. Chem Phys.,
112, 7799 (2000)
[57] P.K. Wei, H.L. Chou, Y.R. Cheng, C.H. Wei, W. Fann, and J.O. Tegenfeldt, Opt.
Commun., 253, 198 (2005)
[58] P.K. Wei, H.L. Chou, and W.S. Fann, Opt. Express, 24, 1418 (2002)
[59] C.H. Wei, P.H. Tsao, W.S. Fann, P.K. Wei, J.O. Tegenfeldt, and R.H. Astin, J.
Opt. Soc. Am. B, 21, 1005 (2004)
[60] H.A. Bethe, Phys. Rev., 66, 163 (1944)
[61] K.M. Chae, H.H. Lee, S.Y. Yim, and S.H. Park, Opt. Express, 12, 2870 (2004)
[62] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D.W. Pohl, Phys. Rev. Lett.,
77, 1889 (1996)
[63] L. Novotny, B. Hecht, and D.W. Pohl, J. Appl. Phys., 81, 1798 (1997)
[64] P.B. Johnson and R.W. Christy, Phys. Rev. B, 6, 4370 (1972)