簡易檢索 / 詳目顯示

研究生: 蘇展祿
Chan-Lu Su
論文名稱: 利用近場光學顯微術研究金屬狹縫奈米線和奈米點的近場光學分佈
Study of Near-field Patterns on Metal Slits, Nanowires, and Nanodots by Near-field Scanning Optical Microscopy
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 84
中文關鍵詞: 近場光學
外文關鍵詞: Near-field, Surface plasmon, NSOM, plasmonics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由穿透式近場光學顯微術,當以532 nm 的綠光雷射照射在試片,從基
    板由下往上照射,我們將研究光經過金屬結構偶合後的近場光學分佈。
    我們製作三種結構用來研究其近場光學分佈,包含金屬微米狹縫,金奈米
    線陣列,和金奈米點陣列。就製作金屬微米狹縫,先將57 nm 的金膜直接鍍在
    玻璃基板上,再藉由本實驗室成熟的原子力顯微術,施加機械力微影於金膜上,
    就成功地製作出單一和多重金微米狹縫。就製作金屬奈米線和點陣列,首先將
    單層的PMMA 阻劑旋鍍在石英基板上,接著鍍上18 nm 的金膜,然後施加機械力
    微影於PMMA 上,最後lift-off 步驟完成,便可成功製作出奈米線陣列和奈米
    點陣列於透明的石英基板上。
    於本實驗中,首先將532 nm 綠光照射在透明基板的一方,光穿過基板和其
    上方的金屬結構反應後,我們以光纖探針為奈米光學孔徑接收近場光學訊號。
    就金屬微米狹縫,於金屬和空氣的介面上,兩種近場光學訊號包含條紋和同心
    圓分布被觀察到。條紋狀的分布皆出現於狹縫的兩旁,而無論是未極化或者是
    極化光皆有出現。而同心圓的分布則僅在下列三種情況會出現:當TE 極化光照
    射在單一狹縫上;當TM 極化光照射在雙狹縫上;當TE 極化光照射在三狹縫上。
    就金奈米線陣列而言,於金屬和空氣介面上,近場光學分布被發現干涉條紋的
    現象。而且在破碎的金奈米線陣列裡,我們也可以觀察到干涉條紋的近場光學
    訊號。然而在金奈米點陣列裡,我們並沒有觀察到近場光學訊號有如同上述的
    干涉條紋產生。


    By using transmission near-field scanning optical microscopy (NSOM),
    near-field optical distributions are studied when green laser source (532 nm) is
    illuminated on the substrate side of the sample.
    Three types of structures: macroslits, nanowire array and nanodot array, are
    fabricated for the study of near-field intensity distributions. The structures of single
    and multiple macroslits are made by atomic force microscopy (AFM) nanomachining
    on Au-deposited glass substrate with the thickness of 57.05 nm. The structures has
    slits with averaged width of 2.72 μm and the period of 10~15 μm. For the fabrication
    of nanowire array and nanodot array, PMMA is spincoated on the quartz substrate as
    a single layer resist first. Using nanomachining, subsequent Au deposition of 18 nm
    thickness, and finally lift-off, nanowire array and nanodot array are fabricated.
    By illuminating the sample from the substrate side with the 532 nm green laser
    source, the near-field intensity is collected by home-made NSOM fiber probe. For
    slits, two types of intensity distributions, namely stripes and concentric circles, on the
    air-gold interface are observed. Stripe patterns appear at two locations, inside slit and
    metal surface without polarization dependence. Concentric circular patterns which
    have 470 nm period, on the other hand, are observed on the air-gold interfaces of the
    one-slit structure with transverse electric (TE) polarized light, two-slit structure with
    transverse magnetic (TM) polarized light, and three-slit structure with TE polarized
    light, respectively. The period of 470 nm is in good agreement with the wavelength of
    surface plasmons. For nanowire array, the interference inside array has the same
    period of 1μm as structure and outside array is the contributions of scattering of each
    gold nanowire plus normal incident intensity. Interference patterns also appeared on
    the broken nanowire array due to scattering of metal gap. For nanodot array, however,
    near-field intensity distributions don’t show interference pattern.

    CONTENTS Chapter 1 Introduction ................................................................................................ 1 1.1 Plasmonics ................................................................................................................ 1 1.2 Motivation ................................................................................................................ 4 Chapter 2 Literature Review and Theory .................................................................. 5 2.1 The History of NSOM .............................................................................................. 5 2.2 Near-field Optics ...................................................................................................... 9 2.2.1 Surface Plasmons............................................................................................ 9 2.2.2 Evanescent Waves ......................................................................................... 11 2.2.3 Imaging Formation of NSOM ...................................................................... 12 2.3 NSOM ..................................................................................................................... 13 2.3.1 Aperture NSOM ............................................................................................ 13 2.3.2 The Comparison of Resolution ..................................................................... 14 2.4 The Near-field Optical Pattern ............................................................................... 15 2.4.1 Nanoslits ....................................................................................................... 17 2.4.2 Nanoholes ..................................................................................................... 18 2.4.3 Nanodots ....................................................................................................... 19 2.4.4 Nanowires ..................................................................................................... 21 2.4 Finite-Difference Time-Domain Simulation (FDTD) ............................................ 22 2.5 Applications ............................................................................................................ 24 Chapter 3 Experimental Procedures and Instruments ........................................... 26 3.1 Fabrication of Single and Multiple Macroslits....................................................... 26 3.2 Fabrication of Nanowire Array and Nanodot Array ............................................... 27 3.2.1 Nanowire Array ............................................................................................ 27 3.2.2 Nanodot Array .............................................................................................. 28 3.3 Fabrication of NSOM Probes ................................................................................. 30 II 3.4 Demonstration of NSOM Set-up ............................................................................ 31 3.5 Instruments ............................................................................................................. 33 3.5.1 Near-field Scanning Optical Microscope ..................................................... 33 3.5.2 Atomic Force Microscope ............................................................................ 35 3.5.3 Micropipette Puller ....................................................................................... 35 3.5.4 Physical Vapor Deposition (PVD) ................................................................ 35 3.5.5 Thermal Evaporator ...................................................................................... 36 Chapter 4 Results and Discussion ............................................................................. 37 4.1 Fabrication of NSOM Fibers .................................................................................. 37 4.2 Fabrication of Structures ........................................................................................ 38 1. Macroslits ...................................................................................................... 38 2. Nanowire Arrays ............................................................................................ 40 3. Nanodot Arrays .............................................................................................. 41 4.3 Metal Macroslits ..................................................................................................... 42 4.3.1 Shear Force Images ...................................................................................... 43 4.3.2 Near-field Optical Patterns ........................................................................... 44 1. Stripe Pattern ................................................................................................. 44 2. Concentric Circular Pattern .......................................................................... 54 4.4 nanowire Arrays ..................................................................................................... 59 4.4.1 Shear Force Images ...................................................................................... 59 4.4.2 Near-field Optical Patterns ........................................................................... 61 4.5 Nanodot Arrays....................................................................................................... 68 4.5.1 Shear Force Images ...................................................................................... 68 4.5.2 Near-field Optical Patterns ........................................................................... 68 Chapter 5 Conclusions ............................................................................................... 70 Reference III FIGURE CONTENTS Figure 1-1. The operating speed of data transporting and processing systems. ........... 1 Figure 1-2. Graph of the operating regimes of different technologe. ........................... 2 Figure 1-3. Plasmonics enhanced microphotonic chip………………………………..3 Figure 2-1. An overview of microscopic imaging. ....................................................... 5 Figure 2-2. Schematic of the interface between dielectric and metal for investigating surface plasmon. ....................................................................................... 9 Figure 2-3. A small aperture of size is illuminated at normal incidence with a plane wave propagating in the Z-direction. ...................................................... 11 Figure 2-4. Model of (a) far-field and (b) near-field microscopes .............................. 13 Figure 2-5. Mode of operation of NSOM. .................................................................. 14 Figure 2-6. Measured optical near-field images at the XY plane (Illumination at Z direction). ................................................................................................ 18 Figure 2-7. (a) SEM images of hole arrays with 250 nm size and 760 nm period. Near-field optical (NFO) intensity (b) when light is along y direction and (c) x direction. (d) zoomed-in image of image (c). ................................ 19 Figure 2-8. (a) Top view of a nanodot coupler with a SPP condenser. (b) Shear-force image of the SPP condenser. (c) Near-field optical intensity of (b) taken at 785 nm. ................................................................................................... 20 Figure 2-9. (a) Near-field images of SPP propagation in a 2.5  m silver stripe. (b) Zooming image of dashed box in (a). (c) Zooming image on stripe. ..... 21 Figure 2-10. Illustration of NSOM set-up for power-dependent emission studies on a single ZnO nanowire............................................................................... 22 Figure 2-11. Spatially resolved NSOM emission image collected on a single ZnO nanowire in a 70 nm wide spectral band centered at 400 nm. ................ 22 Figure 2-12. (a) The near-field optical distribution taken at l=785 nm. (b) Calculated IV spatial distribution of electric-field energy using the FDTD method. (c) The dashed and solid curves are cross-sectional profiles along the dashed white lines in (a) and (b) respectively. .................................................... 23 Figure 2-13. (a) Schematic diagram of NSOM in liquid with tuning fork diving bell. (b) The white circle indicates the position of single molecules. (c) The line trace through the individual molecules. .................................................. 24 Figure 3-1. The fabrication process of single and multiple macroslits on gold film. . 27 Figure 3-2. The fabrication process of gold nanowire array on quartz substrate. ...... 29 Figure 3-3. The fabrication process of gold nanodot array on quartz substrate.......... 29 Figure 3-4. The fabrication process of NSOM fiber probe. ........................................ 31 Figure 3-5. The schematic diagram of NSOM set-up in the experiment. ................... 33 Figure 3-6. The shear force measuring head functional scheme ................................. 34 Figure 3-7. The sketch of a set-up for pulling of optical fibers using a CO2. ............. 35 Figure 3-8. The schematic diagram of Physical Vapor Deposition (PVD) ................. 36 Figure 4-1. The operating resonance frequency at 190 kHz. ...................................... 37 Figure 4-2. SEM image of the macroslits on 37.06 nm gold film. (a) Single slit. (b) Double slits. (c) Triple slits. .................................................................... 39 Figure 4-3. (a) SEM image of nanowire array. (b) Zoomed-in image of (a). ............. 40 Figure 4-4. SEM image of 10X10 nanodot array which each nanodot has around 100 ~ 150 nm in size. ........................................................................................ 41 Figure 4-5. Unpolarized, TE mode, and TM mode light is illuminated normally on the (a) single slit, (b) double slits, and (c) triple slits. .................................. 42 Figure 4-6. The topological shear force image of gold macroslits. (a) Single slit and its cross-sectional profile. (b) Double slits and its cross-sectional profile. (c) Triple slits and its cross-sectional profile. .............................................. 43 Figure 4-7. (a) The topological shear force image of single slit. Near-field optical V distributions when light is (b) unpolarized, (c) TE-polarized, and (d) TM-polarized. ......................................................................................... 45 Figure 4-8. (a) The topological shear force image of single slit. Near-field optical distributions when light is (b) unpolarized, (c) TE-polarized, and (d) TM-polarized. ......................................................................................... 46 Figure 4.9. (a) The topological shear force image of triple slit. Near-field optical distributions when light is (b) unpolarized, (c) TE-polarized, and (d) TM-polarized. ......................................................................................... 47 Figure 4-10. (a) Near-field intensity distributions when unpolarized light. (b) The cross-sectional profile of (a). .................................................................. 48 Figure 4-11. Cross-sectional profile of near-field optical intensities when (a) unpolarized, (b) TE-polarized, and (c) TM-polarized light is illuminated. ………………………………………………………………………….49 Figure 4-12. FDTD calculation results for multiple slits. The slit width is 300 nm and the separation is 2  m. (a) Intensity distribution (Ey component) for TM mode wave. (b) Intensity distribution (Ex component) for TE mode wave (c) Ez component for TE mode. (d) Sketch of the interference effect of Ez fields on the surface of slits. ................................................................... 50 Figure 4-13. (a) FDTD simulation for TE mode intensity distribution. (b) Line profile of (a). ....................................................................................................... 51 Figure 4-14. (a) The near-field intensity distribution when illuminating unpolarized light. (b) The cross-sectional analysis of (a). .......................................... 52 Figure 4-15. (a) FDTD calculation with 2 μm distances between two slits. (b) Magnified display of the region between two slits in (a) ....................... 53 Figure 4-16. Concentric circular pattern of near-field distributions. (a) Single slit when TM mode. (b) Double slits when TE mode. (c) Triple slits when TM mode. VI ………………………………………………………………………….55 Figure 4-17. Experimental images of protrusion on silver film recorded with aperture NSOM. (a) Shear-force image. (b) Near-field optical distributions. ...... 56 Figure 4-18. The cross-sectional profile of concentric circular patterns (a) Single slit when TM mode. (b) Double slits when TE mode. (c) Triple slits when TM mode........................................................................................................ 57 Figure 4-19. Unpolarized, TE-polarized, and TM-polarized light is illuminated normally on nanowire array. ................................................................... 59 Figure 4-20. Nanowire array (a) The topological shear force images. (b) cross-sectional profiles of (a). (c) The zoom-in image of (a). (d) cross-sectional profiles of (c).................................................................. 60 Figure 4-21. Nanowire array (a) Topological shear force image. (b) Near-field intensity distributions. (c) Zoom-in image of (b). ................................................. 62 Figure 4-22. Nanowire array. (a) Topological shear force image. (b) Near-field intensity distributions in the nanowire array. .......................................... 63 Figure 4-23. Nanowire array. (a) Topological shear force image. (b) Near-field intensity distributions. (c) Zoom-in image of (b). .................................. 64 Figure 4-24. Metal gaps in Nanowire when unpolarized light. (a) Topological shear force image. (b) and (c) Near-field intensity distributions. (d). Cross-sectional profile of scattering pattern. .......................................... 65 Figure 4-25. Metal gaps in Nanowire when TE-polarized light. (a) Topological shear force image. (b) and (c) Near-field intensity distributions. .................... 66 Figure 4-26. Metal gaps in Nanowire when TM-polarized light. (a) Topological shear force image. (b) Near-field intensity distributions. ................................ 67 Figure 4-27. Nanodot array. (a) Topological shear force image. (b) Cross-sectional analysis of (a). (c) Near-field intensity distributions .............................. 69 V II TABLE CONTENTS Table 2-1. The chronicle of NSOM. .............................................................................. 7 Table 2-2. Resolution presently achievable in optical imaging. ................................. 15 Table 2-3. Near-field pattern of various nanostructures .............................................. 15 Table 2-4. Single-molecule fluorescence microscopy. ................................................ 25 Table 2-5. Biological applications of NSOM. ............................................................. 25 Table 3-1. The listed instruments in fabricating macroslits. ....................................... 26 Table 3-2. The listed instruments in fabricating nanowire array. ................................ 27 Table 3-3. The listed instruments in fabricating nanodot array. .................................. 28 Table 3-4. The listed instruments in fabricating NSOM probe. .................................. 30 Table 3-5. The listed components of home-made NSOM set-up ................................ 31 Table 4-1. The three kind of structures for study of near-field optical distributions. . 38 Table 4-2. Near-field intensity distributions with different polarizations for single, double, and triple slits. .............................................................................. 58

    Reference
    [1] E. Ozbay, Science, 311, 189 (2006)
    [2] V.M. Shalaev, www.nanohub.org (2007)
    [3] R. Zia, J.A. Schuller, A. Chandran, and M.L. Brongersma, Materialstoday, 9, 20
    (2006)
    [4] H. R□ther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings
    (Springer-Verlag, Berlin, 1988).
    [5] J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P.
    Goudonnet, Phys. Rev., 64, 045411-1 (2001)
    [6] L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julie, V. Mathet, and M. Mortier, Phys.
    Rev. Lett., 98, 153902-1 (2007)
    [7] S.A. Maier, M.L. Brongersma, and H.A. Atwater, Appl. Phys. Lett., 78, 16 (2001)
    [8] http://cobweb.ecn.purdue.edu/~ece695s/
    [9] Lord Rayleigh, Philos. Mag., 8, 261 (1879)
    [10] A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R.
    Dekhter, and E. Ammann, Nature Biotechnology., 21, 31378 (2003)
    [11] G. Binnig, H. Rohrere, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982)
    [12] E. Abbe, Archiv. F. Mikroshop, 9, 413 (1873)
    [13] E.H. Synge, Phil. Mag., 6, 356 (1928)
    [14] H. A. Beth, Phys. Rev., 66, 163 (1944)
    [15] C. J. Bouwkamp, Rep. Pro. Phys., 17, 35 (1954)
    [16] J.A. O’Keefe, J. Opt. Soc. Am., 46, 359 (1956)
    [17] E.A. Ash and G. Nicholls, Nature, 237, 510 (1972)
    [18] D.W. Pohl, W. Denk, M. Lanz, Appl. Phys., 44, 651 (1984)
    [19] A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, Ultramicroscopy, 13,
    227 (1984)
    [20] R.C. Reddick, R.J. Warmack, and T.L. Ferrell, Phys. Rev., 39, 767 (1989)
    [21] E. Betzig, J. K. Trautmann, T.D. Harris, J.S. Weiner, and R.L. Kostelak, Science,
    251, 1468 (1991)
    [22] E. Betzig, J.K. Trautman, J.S. Weiner, T.D. Harris, and R. Wolfe, Appl. Opt., 31,
    4563 (1992)
    [23] F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Lett., 65, 1623
    (1994)
    [24] K. Karrai and R.D. Grober, Appl. Phys. Lett., 66, 1842 (1995)
    [25] J. Tominaga, T. Nakano, and N. Atoda, Appl. Phys. Lett., 73, 2078 (1998)
    [26] D. Courjon, Near-Field Microscope and Near-Field Optics (Imerial college
    press, Singapore,2003)
    [27] M.A. Paesler and P.J. Moyer, Near-Field Optics: Thoery, Instrumentation, and
    Applications (Wiley, New York, 1996)
    [28] B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, D.W. Pohl, J.
    Chem Phys., 112, 7761 (2000)
    [29] J.M. Vigoureux, F. Depasse, and C. Girard, Appl. Opt., 31, 3036 (1992)
    [30] 蔡定平,科儀新知 第二十一卷第五期,17 (2000).
    [31] P.K. Wei, H.L. Chou, and W.S. Fann, Opt. Express, 10, 1418 (2002)
    [32] P.K. Wei, H.L. Chou, Y.R. Cheng, C.H. Wei, W. Fann, and J.O. Tegenfelt, Opt.
    Commun., 253, 198 (2005)
    [33] L. Yin, V.K. Vlasko, J. Person, J. M. Hiller, J. Hua, U. Welp, D.E. Brown, and
    C.W. Kimball, Nano Lett., 5, 1399 (2005)
    [34] E. Devaux, T.W. Abbesen, J.-C. Weeber, and A. Dereux, Appl. Phys. Lett., 83,
    4936 (2003)
    [35] G. A. Wurtz, J. Hranisavlijevic, and G.P. Wiederrecht, Nano Lett., 3, 1511 (2003)
    [36] W. Nomura, T. Yatsui, and M. Ohtsu, Appl. Phys. B, 84, 257 (2006)
    [37] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R.
    Ausenegg, and J. R. Krenn, Phys. Rev. Lett., 95, 257403 (2005)
    [38] A. Degiron, H.J. Lezec, N. Yamamoto, and T. W. Ebessen, Opt. Commun, 239,
    61 (2004)
    [39] R. Wannemacher, Opt. Commun., 195, 107 (2001)
    [40] L. Salomon, F. Grillot, A.V. Zayats, and F. de Fornel, Phys. Rev. Lett., 86, 1110
    (2001)
    [41] M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev B, 67, 085415-1
    (2003)
    [42] S.H. Chang, S.K. Gray, and G.C. Schatz, Opt. Express, 13, 3150 (2005)
    [43] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature
    (London), 391, 667 (1998)
    [44] H.J. Lezec and T. Thio, Opti. Exprss, 12, 3629 (2004)
    [45] W. Nomura, T. Yatsui, and M. Ohtsu, Proceed. SPIE, 5927, 59270B-1 (2005)
    [46]W. Nomura, T. Yatsui, and M. Ohtsu, Appl. Phys. Lett., 86, 181108 (2005)
    [47] W.L. Barnes and A. Dereux, and T.W. Ebbesen, Nature, 424, 824 (2003)
    [48] J.P. Kottmann, J.P. Martin, O.J.F. Smith, and S. Schultz, Phys. Rev. B, 64, 5420
    (2001)
    [49] J.-C. Weeber, A. Deraux, C. Girard, J.R. Krenn, and J.P. Goudonett, Phys. Rev. B,
    60, 9061 (1999)
    [50] J. R. Krenn and J.-C. Weeber, Phil. Trans. R. Soc. Lond. A, 362, 739 (2004)
    [51] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Phan, R.
    He, and H.J. Choi, Adv. Funct. Mater., 5, 323 (2002)
    [52] K.S. Yee, IEEE Trans. Ant. Propagation, 14, 301 (1966)
    [53] M. Koopman, A. Cambi, B.I. de Bakkar, B. Joosten, C.G. Figdor, N.F. van Hulst,
    M.F. Garcia-Parajo, FEBS Lett, 573, 328690-6 (2004)
    [54] F. de Lange, A. Cambi, R. Huijibens, Barbel de Bakker, W. Rensen, M.
    Garcia-Parajo, N. van Hulst, and C.G. Figdor, J. Cell Science, 114, 4153 (2001)
    [55] E. Betzig and R.J. Chichester, Science, 262, 1422 (1993)
    [56] V. Hulst, N.F. Veerman, J.A. Garcia-Parajo, M.F., and L. Kuipers, J. Chem Phys.,
    112, 7799 (2000)
    [57] P.K. Wei, H.L. Chou, Y.R. Cheng, C.H. Wei, W. Fann, and J.O. Tegenfeldt, Opt.
    Commun., 253, 198 (2005)
    [58] P.K. Wei, H.L. Chou, and W.S. Fann, Opt. Express, 24, 1418 (2002)
    [59] C.H. Wei, P.H. Tsao, W.S. Fann, P.K. Wei, J.O. Tegenfeldt, and R.H. Astin, J.
    Opt. Soc. Am. B, 21, 1005 (2004)
    [60] H.A. Bethe, Phys. Rev., 66, 163 (1944)
    [61] K.M. Chae, H.H. Lee, S.Y. Yim, and S.H. Park, Opt. Express, 12, 2870 (2004)
    [62] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D.W. Pohl, Phys. Rev. Lett.,
    77, 1889 (1996)
    [63] L. Novotny, B. Hecht, and D.W. Pohl, J. Appl. Phys., 81, 1798 (1997)
    [64] P.B. Johnson and R.W. Christy, Phys. Rev. B, 6, 4370 (1972)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE