簡易檢索 / 詳目顯示

研究生: 陳建廷
論文名稱: 可展開性自由曲面之幾何模擬:理論分析及設計與製造之應用
Geometric Modeling of Developable Free-form Surfaces: Theories and Applications in Design / Manufacturing
指導教授: 瞿志行
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 116
中文關鍵詞: 可展開性曲面規則曲面Bézier曲面B-Spline曲面側銑
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討由兩條邊界曲線所形成的可展開性曲面之幾何設計理論,以及如何應用該理論於三維產品設計與製造。首先利用可展開性條件配合Bézier與B-Spline曲線所對應之de Casteljau及de Boor演算法,推導出自由曲面具有可展開性時其控制點必須滿足的明確限制條件,並且證明在設計此類曲面時,無論曲面的階數為何,若其中一條邊界曲線被指定後,另一條邊界曲線的設計自由度將只剩下五個。對於m個可展開性塊面(patch)相接而成的可展開性複合曲面(composite surface)而言,若其中一條邊界曲線決定後,在G0、G1及G2連續性下時其可運用的設計自由度分別為(2m + 3)、(m + 4)及5;在C1及C2連續性下,對應的自由度分別為5及(7 - 2m)。本研究將上述推導之理論結果應用於三維產品造形設計上,實際利用Bézier複合式可展開性曲面模擬一船體的造型,並將設計出之船體外型實際攤平驗證之。在製造應用上,則利用可展開性曲面任一直紋線(Ruling)具有單一切平面的性質,提出一套全新的方法避免五軸刀柄銑削規則曲面所發生的區域性刀具干涉,並利用可展開性曲面的控制點自由度,產生相接的可展開性塊面逼近加工曲面,使用者可指定最大切削誤差值來控制此近似過程。藉此成功地將五軸銑削的路徑規劃問題轉換為幾何模擬之計算,結果並透過切削實驗加以驗證。本研究除了討論以二階Bézier曲面近似規則曲面的演算法外,並提出進階的曲面調整,以及重新參數法等兩項方式來改善近似法則的誤差。
    未來研究重點在於將設計理論擴展至可展開性NURBS曲面,此外應用較高階的數學式產生更為接近加工形狀的可展開性複合曲面,並將建置互動式的曲面設計系統,使用者可自行設計符合其加工需求的可展開性曲面,自動產生刀具五軸側銑路徑。


    第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究方法 3 1-4 研究架構 5 第二章 可展開性曲面介紹及其限制條件 7 2-1 可展開性條件 7 2-2 二階Bézier可展開性曲面限制條件 8 2-3 三階Bézier可展開性曲面限制條件 11 2-4 Bézier可展開性曲面設計自由度探討 13 2-5 Bézier可展開性曲面設計方法 13 2-5-1 二階Bézier可展開性曲面設計方法 14 2-5-2 三階Bézier可展開性曲面設計方法 18 2-6 Bézier退化可展開性曲面的設計自由度探討 24 2-7 三階B-Spline可展開性曲面限制條件 26 2-8 B-Spline可展開性曲面的設計自由度探討 29 第三章 可展開性複合曲面自由度探討 30 3-1 可展開性複合曲面簡介 30 3-2 Bézier可展開性複合曲面 31 3-2-1 幾何連續 31 3-2-2 參數連續 33 3-3 B-Spline可展開性複合曲面 34 第四章 可展開性曲面設計範例 37 4-1 Bézier退化可展開性曲面設計範例 37 4-2 B-Spline可展開性曲面設計範例 39 4-3 Bézier可展開性複合曲面設計範例 40 4-3-1 G0連續 41 4-3-2 G1連續 42 4-3-3 G2連續 43 4-3-4 C1連續 44 4-3-5 C2連續 46 4-3-6 船體設計範例 47 4-4 B-Spline可展開性複合曲面設計範例 50 第五章 可展開性曲面於五軸側銑加工之初步應用 52 5-1 五軸側銑文獻回顧 52 5-2 側銑規則曲面的區域干涉問題 54 5-3 可展開性曲面特性及解決作法 55 5-3 可展開性曲面近似規則曲面演算法 56 5-5 可展開性曲面近似規則曲面作法 59 5-6 曲面誤差估計 60 5-7 實際範例 61 第六章 可展開性曲面於五軸側銑加工之進階應用 66 6-1 可展開性曲面近似規則曲面演算法之改進 66 6-1-1 調整可展開性曲面控制點 66 6-1-2 重新參數化規則曲面直紋線 72 6-2 可展開性曲面近似規則曲面修正演算法 80 6-3 實際範例 81 6-4 近似曲面演算法之比較 86 第七章 結論與未來展望 92 參考文獻 94 附錄一 船體模型設計之曲面控制點位置 98 附錄二 原近似演算法結果之曲面控制點位置 108 附錄三 近似修正演算法結果之曲面控制點位置一 112 附錄四 近似修正演算法結果之曲面控制點位置二 115

    [1] Ferris L.W., “A standard series of developable surfaces,” Marine Technology, Vol. 5, pp. 53-66, 1968.
    [2] Weiss G. and Furtner P., “Computer-aided treatment of developable surfaces,” Computers and Graphics, Vol. 12, No. 1, pp. 39-61, 1988.
    [3] Hinds B.K., McCartney J., and Woods G. “Pattern development for 3D surfaces,” Computer Aided Design, Vol. 23, No. 8, pp. 583-592, 1991.
    [4] Mortenson M. Geometric modeling, John Wiley & Sons, 1985.
    [5] Norlan T.J., “Computer aided design of developable surfaces,” Marine Technology, Vol. 8, pp. 233-242, 1971.
    [6] Aumann G., “Interpolation with developable Bézier patches,” Computer Aided Geometric Design, Vol. 8, pp. 409-420, 1991.
    [7] Aumann G., “A simple algorithm for designing developable Bézier surface,” Computer Aided Geometric Design, Vol. 20, pp. 601-616, 2004.
    [8] Lang J. and Röschel O., “Developable (1, n)-Bézier surfaces,” Computer Aided Geometric Design, Vol. 9, pp. 291-298, 1992.
    [9] Mancewicz M.J. and Frey W.H., “Developable surfaces: properties, representations and methods of design,” GM Research Publication 1992; GMR-7637.
    [10] Frey W.H. and Bindschadler D., “Computer aided design of a class of developable Bézier surfaces,” GM Research Publication 1993; GMR-8057.
    [11] Chalfant J.S. and Maekawa T., “Design for manufacturing using B-Spline developable surfaces,” Journal of Ship Production, Vol. 42, No. 3, pp. 207-215, 1998.
    [12] Maekawa T. and Chalfant J.S., “Design and tessellation of B-Spline developable surfaces,” ASME Transaction Journal of Mechanical Design, Vol. 120, pp. 453-461, 1998.
    [13] Bodduluri R.M.C. and Ravani B., “Geometric design and fabrication of developable Bézier and B-spline surfaces,” ASME Transaction Journal of Mechanical Design, Vol. 116, pp. 1024-1048, 1994.
    [14] Ravani B. and Wang J.W., “Computer aided geometric design of line constructs,” ASME Journal of Mechanical Design, Vol. 113, pp. 363-371, 1991.
    [15] Sundar Varada Raj P., “Evolution of generic mathematical models and algorithms for the surface development and manufacture of complex ducts,” ASME Journal of Engineering for Industry, Vol. 117, pp. 177-185, 1995.
    [16] Gan M.C., Tan S.T., and Chan K.W., “Generating and flattening of developable surfaces,” ASME Proceeding of Advanced Design Automation, Vol. 1, pp. 359-366, 1994.
    [17] Hoschek J. and Pottmann H., “Interpolation and approximation with developable B-spline surfaces.” Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, pp. 255-264, 1995.
    [18] Pottmann H. and Wallner J., “Approximation algorithms for developable surfaces,” Computer Aided Geometric Design, Vol. 16, No. 6, pp. 539-556, 1999.
    [19] Chu C.H. and Séquin C.H., “Developable Bézier Patches: Properties and Design,” Computer Aided Design, Vol. 34, No. 7, pp. 511-527, 2002.
    [20] Chu, C.H. and Chen, J.T., Geometric Design of Developable Composite Bézier Surfaces, Computer Aided Design and Applications, Vol. 1, No. 3, pp. 531-540, 2004.
    [21] Chu, C. H. and Chen, J. T., “Geometric Design of UNIFORM Developable B-Spline Surfaces,” ASME 30th Design Automation Conference DETC2004-57257, Salt Lake City, Utah, USA, 2004.
    [22] Chu, C. H. and Chen, J. T., “Geometric Design of Developable B-Spline Patches,” The 20st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Taipei, Taiwan, 2003.
    [23] Chen, J.T. and Chu, C.H., “Automatic Avoidance of Local Tool Interference in Five-Axis Flank Milling,” The 21st National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Kaohsiung, Taiwan, 2004.
    [24] Rockwood, A. and Chambers, P. Interactive Curves and Surface
    [25] http://www.rhino3d.com/
    [26] Tönshoff, H. K., Gey, C. and Rackow, N., “Flank Milling Optimization – The Flamingo Project,” Air and Space Europe, Vol. 3, No. 3/4, pp. 60-63, 2001
    [27] Bedi, S., Mann, S., and Menzel, C., “Flank Milling with Flat End Milling Cutters,” Computer-Aided Design, Vol. 35, pp. 293-300, 2003
    [28] Menzel, C., Bedi, S., and Mann, S., “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296, 2004
    [29] Liu, X. W., “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 87-94, 1995
    [30] Bohez, E. L. J., Senadhera, S. D. R., Pole, K., Duflou, J. R., and Tar, T., “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp. 422-436, 1997
    [31] Mawussi, K. and Bernard, A., “Three-Dimensional Cutter-Tool-Path Restriction. Application to Ruled Surfaces Approximated by Plane Bifacet,” Computers in Industry, Vol. 35, pp. 247-259, 1998
    [32] Lartigue, C., Duc E., and Affouard A., “Tool Path Deformation in 5-Axis Flank Milling Using Envelope Surface,” Computer-Aided Design, Vol. 35, pp. 375-382, 2003
    [33] Tsay, D. M. and Her, M. J., “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738, 2001
    [34] Tsay, D. M., Chen, H. C., and Her, M. J., “A Study on Five-axis Flank Machining of Centrifugal Compressor Impellers,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 177-181, 2002
    [35] Chu, C.H. and Chen, J.T., “Automatic Tool Path Generation for 5-axis Flank Milling based on Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, 2004
    [36] Li, C., Mann, S., and Bedi, S., “Error measurements for flank milling”, Computer-Aided Design, 2005
    [37] http://www.spatial.com/
    [38] http://www.cgtech.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE