研究生: |
博薩燁 Syed Nooruzuha Barmaver |
---|---|
論文名稱: |
剖析調節粒線體軸突運輸之新興分子機制 Unraveling novel molecular mechanisms to regulate axonal transport of mitochondria |
指導教授: |
王歐力
Wagner, Oliver Ingvar |
口試委員: |
歐展言
Ou, Chan-Yen 許翺麟 Hsu, Allen 彭明德 Perng, Ming-Der 林玉俊 Lin, Yu-Chun |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | 軸突 、驅動蛋白 、粒線體 、運輸 |
外文關鍵詞: | axons, kinesins, mitochondria, transport |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多神經學疾病與粒線體運輸在軸突上的改變有關。因此了解粒線體動力學是如何在分子層次上被調節相當重要。自候選基因篩選中,我們找出了能夠調節粒線體形態及動力學的蛋白SFXN-1.2。有趣的是,SFXN-1.2是與阿茲海默症、帕金森氏症相關的人類蛋白Sideroflexin 1/3的直系同源基因。我們的研究結果顯示SFXN-1.2會透過一個與夏柯-馬利-杜斯氏症有關的蛋白CX32(連接蛋白32)和驅動蛋白-3 KIF1A(UNC-104)結合。儘管SFXN-1.2與CX32影響了粒線體動力學,他們也能單獨影響分子馬達UNC-104的運動。雖然已知UNC-104透過其PH結構域與突觸囊泡結合,我們發現這個結構域並未在連結分子馬達與粒線體中扮演任何角色。更重要的是SFXN-1.2對突觸囊泡的運輸沒有任何影響,這強調了其角色對於粒線體運輸的專一性。透過酵母菌雙雜交系統、共免疫沉澱與雙螢光分子互補試驗,我們精確化了UNC-104/CX32/SFXN-1.2複合體的關鍵互動架構。在我們的模型中驅動蛋白-1與驅動蛋白-3相互合作地運送粒線體,因為miro-1和trak-1的基因敲落進一步加強了unc-104突變對粒線體運動的負面效應。SFXN-1.2的突變明顯地導致秀麗隱桿線蟲的運動與感覺神經缺陷,影響了該動物的碰觸反應及限制其身體動作。最後我們揭露粒線體生物能量學與粒線體自噬均未受到sfxn-1.2突變的影響
粒線體與中間絲(IF)的聚集經常發生在不平衡的軸突運輸中,並導致許多型態的神經學疾病。目前對於神經性中間絲與粒線體運動是否存在關聯仍然了解甚少。在秀麗隱桿線蟲的11個細胞質中間絲家族蛋白中,IFB-1特別令人感興趣,因為其在部分的感覺神經中表現。IFB-1的減少導致了輕微的染劑填充缺陷、顯著的化學趨向性缺陷以及壽命的減少。感覺神經發育也受到了影響,而粒線體運輸亦減慢並造成這些胞器密度的減少。IFB-1突變株的粒線體傾向於神經中簇聚成群有可能與粒線體分裂、融合機制無關。帶有ifb-1突變基因的線蟲被檢測出其粒線體膜電位的下降。膜電位似乎也在運輸中扮演了重要的角色,因為給予氰化羰對三氟甲氧苯基腙的處理增加了粒線體在方向上的變換。總結來說,我們提出了一個模型,其中神經性中間絲可能為了穩定與平衡的運輸,在粒線體於神經的長距離運輸中作為其重要的(瞬間的)錨點。
Various neurological diseases are linked to changes in mitochondrial trafficking in axons. Thus, it is crucial to understand how the dynamics of mitochondria are regulated on the molecular level. From a candidate screen, we identified protein SFXN-1.2 to regulate both morphologies as well as dynamics of mitochondria. Interestingly, SFXN-1.2 is an ortholog of human Sideroflexin 1/3 associated with Alzheimer's disease and Parkinson's disease. We show that SFXN-1.2 binds to kinesin-3 KIF1A(UNC-104) via CX32 (Connexin 32), a protein known to be linked to Charcot-Marie-Tooth diseases. While SFXN-1.2 and CX32 affect the dynamics of mitochondria, they also affect the motility of the molecular motor UNC-104 alone. Though it is known that UNC-104 binds to synaptic vesicles via its PH domain, we found no role of this domain in linking the motor to mitochondria. Critically, SFXN-1.2 has no effect on synaptic vesicle trafficking under-lining the specificity of its role on mitochondria transport. From yeast two-hybrid, co-immunoprecipitation, and bimolecular fluorescent complementation assays, we narrowed down critical interaction schemes of the UNC-104/CX32/SFXN-1.2 complex. In our model, kinesin-1 and kinesin-3 act cooperatively to transport mitochondria since the knocking down of miro-1 and trak-1 further enhances the negative effect of unc-104 mutations on mitochondrial motility. Strikingly, mutations in SFXN-1.2 lead to motor- and sensory neuron defects in C. elegans affecting the animal’s touch responses as well as restricting body movements. Lastly, we revealed that neither mitochondrial bioenergetics nor mitophagy are affected by the sfxn-1.2 mutation.
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axon-al transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis de-fects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport.
Abrams, C.K., E. Lancaster, J.J. Li, G. Dungan, D. Gong, S.S. Scherer, and M.M. Freidin. 2022. Knock-in mouse models for CMTX1 show a loss of function phenotype in the peripheral nervous system. Exp Neurol. 360:114277.
Amorim, I.S., L.C. Graham, R.N. Carter, N.M. Morton, F. Hammachi, T. Kunath, G. Pennetta,
S.M. Carpanini, J.C. Manson, D.J. Lamont, T.M. Wishart, and T.H. Gillingwater. 2017. Sideroflexin 3 is an alpha-synuclein-dependent mitochondrial protein that regulates synaptic morphology. J Cell Sci. 130:325-331.
Barlan, K., and V.I. Gelfand. 2017. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harbor perspectives in biology. 9.
Barmaver, S.N., M. Muthaiyan Shanmugam, Y. Chang, O. Bayansan, P. Bhan, G.H. Wu, and O.I. Wagner. 2022. Loss of intermediate filament IFB-1 reduces mobility, density, and physiological function of mitochondria in Caenorhabditis elegans sensory neurons. Traffic. 23:270-286.
Bertholet, A.M., T. Delerue, A.M. Millet, M.F. Moulis, C. David, M. Daloyau, L. Arnaune- Pelloquin, N. Davezac, V. Mils, M.C. Miquel, M. Rojo, and P. Belenguer. 2016. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 90:3-19.
Bhan, P., M. Muthaiyan Shanmugam, D. Wang, O. Bayansan, C.W. Chen, and O.I. Wagner. 2019.
Characterization of TAG-63 and its role on axonal transport in C. elegans. Traffic.
Bortolozzi, M. 2018. What's the Function of Connexin 32 in the Peripheral Nervous System?
Frontiers in molecular neuroscience. 11:227.
Brady, S.T., and G.A. Morfini. 2017. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis. 105:273-282.
Cason, S.E., and E.L.F. Holzbaur. 2022. Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol.
Cheng, X.T., N. Huang, and Z.H. Sheng. 2022. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron. 110:1899-1923.
Fenton, A.R., T.A. Jongens, and E.L.F. Holzbaur. 2021. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nature communications. 12:4578.
Fort, A.G., J.W. Murray, N. Dandachi, M.W. Davidson, R. Dermietzel, A.W. Wolkoff, and D.C. Spray. 2011. In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem. 286:22875-22885.
Fowler, S.L., M. Akins, H. Zhou, D. Figeys, and S.A. Bennett. 2013. The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res. 12:2597-2610.
Guedes-Dias, P., and E.L.F. Holzbaur. 2019. Axonal transport: Driving synaptic function. Science.
366.
Guillaud, L., S.E. El-Agamy, M. Otsuki, and M. Terenzio. 2020. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Frontiers in molecular neuroscience. 13:556175.
Guo, W., K. Stoklund Dittlau, and L. Van Den Bosch. 2019. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol.
Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 68:610-638.
Hirokawa, N., and Y. Tanaka. 2015. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp Cell Res. 334:16-25.
Huo, L., Y. Yue, J. Ren, J. Yu, J. Liu, Y. Yu, F. Ye, T. Xu, M. Zhang, and W. Feng. 2012. The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A. Structure. 20:1550-1561.
Ichishita, R., K. Tanaka, Y. Sugiura, T. Sayano, K. Mihara, and T. Oka. 2008. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem. 143:449-454.
Kory, N., G.A. Wyant, G. Prakash, J. Uit de Bos, F. Bottanelli, M.E. Pacold, S.H. Chan, C.A. Lewis, T. Wang, H.R. Keys, Y.E. Guo, and D.M. Sabatini. 2018. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 362.
Ledahawsky, L.M., M.E. Terzenidou, R. Edwards, R.A. Kline, L.C. Graham, S.L. Eaton, D. van der Hoorn, H. Chaytow, Y.T. Huang, E.J.N. Groen, A.A.L. Motyl, D.J. Lamont, K.
Tokatlidis, T.M. Wishart, and T.H. Gillingwater. 2022. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J. 289:3894-3914.
Lin, M.Y., and Z.H. Sheng. 2015. Regulation of mitochondrial transport in neurons. Exp Cell Res.
334:35-44.
Lockhart, P.J., B. Holtom, S. Lincoln, J. Hussey, A. Zimprich, T. Gasser, Z.K. Wszolek, J. Hardy, and M.J. Farrer. 2002. The human sideroflexin 5 (SFXN5) gene: sequence, expression analysis and exclusion as a candidate for PARK3. Gene. 285:229-237.
Lopez-Domenech, G., C. Covill-Cooke, D. Ivankovic, E.F. Halff, D.F. Sheehan, R. Norkett, N. Birsa, and J.T. Kittler. 2018. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37:321-336.
Maday, S., A.E. Twelvetrees, A.J. Moughamian, and E.L. Holzbaur. 2014. Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation. Neuron. 84:292-309.
Minjarez, B., K.G. Calderon-Gonzalez, M.L. Rustarazo, M.E. Herrera-Aguirre, M.L. Labra- Barrios, D.E. Rincon-Limas, M.M. Del Pino, R. Mena, and J.P. Luna-Arias. 2016. Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics. 139:103-121. Olesen, M.A., F. Villavicencio-Tejo, and R.A. Quintanilla. 2022. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl
Neurodegener. 11:36.
Panchal, K., and A. Krishna Tiwari. 2020. Miro (Mitochondrial Rho GTPase), a key player of Mitochondrial axonal transport and Mitochondrial dynamics in Neurodegenerative diseases. Mitochondrion.
Pozo Devoto, V.M., I.G. Onyango, and G.B. Stokin. 2022. Mitochondrial behavior when things go wrong in the axon. Frontiers in cellular neuroscience. 16:959598.
Rashid, D.J., J. Bononi, B.P. Tripet, R.S. Hodges, and D.W. Pierce. 2005. Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A. J Pept Res. 65:538-549.
Ren, J., S. Wang, H. Chen, W. Wang, L. Huo, and W. Feng. 2018. Coiled-coil 1-mediated fastening of the neck and motor domains for kinesin-3 autoinhibition. Proc Natl Acad Sci U S A. 115:E11933-E11942.
Sabharwal, V., and S.P. Koushika. 2019. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Frontiers in cellular neuroscience. 13:470.
Seager, R., L. Lee, J.M. Henley, and K.A. Wilkinson. 2020. Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signal. 4:NS20200008.
Shanmugam, M.M., S.N. Barmaver, H.Y. Huang, O. Bayansan, and O.I. Wagner. 2020. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell:mbcE19100591.
Sheng, Z.H. 2017. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol. 27:403-416.
Siddiqui, N., and A. Straube. 2017. Intracellular Cargo Transport by Kinesin-3 Motors.
Biochemistry (Mosc). 82:803-815.
Sleigh, J.N., A.M. Rossor, A.D. Fellows, A.P. Tosolini, and G. Schiavo. 2019a. Axonal transport and neurological disease. Nat Rev Neurol.
Sleigh, J.N., A.M. Rossor, A.D. Fellows, A.P. Tosolini, and G. Schiavo. 2019b. Axonal transport and neurological disease. Nat Rev Neurol. 15:691-703.
Smith, E.F., P.J. Shaw, and K.J. De Vos. 2019. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 710:132933.
Sure, G.R., A. Chatterjee, N. Mishra, V. Sabharwal, S. Devireddy, A. Awasthi, S. Mohan, and S.P. Koushika. 2018. UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Scientific reports. 8:8938.
Van Steenbergen, V., F. Lavoie-Cardinal, Y. Kazwiny, M. Decet, T. Martens, P. Verstreken, W. Boesmans, P. De Koninck, and P. Vanden Berghe. 2022. Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Proc Natl Acad Sci U S A. 119:e2203499119.
Wagner, O.I., A. Esposito, B. Kohler, C.W. Chen, C.P. Shen, G.H. Wu, E. Butkevich, S. Mandalapu, D. Wenzel, F.S. Wouters, and D.R. Klopfenstein. 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A. 106:19605-19610.
Wu, G.H., M. Muthaiyan Shanmugam, P. Bhan, Y.H. Huang, and O.I. Wagner. 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC- 104(KIF1A) Motility and Clustering in Neurons. Traffic. 17:891-907.
Zhao, Y., E. Song, W. Wang, C.H. Hsieh, X. Wang, W. Feng, X. Wang, and K. Shen. 2021. Metaxins are core components of mitochondrial transport adaptor complexes. Nature communications. 12:83.
Abrams, C.K., E. Lancaster, J.J. Li, G. Dungan, D. Gong, S.S. Scherer, and M.M. Freidin. 2022. Knock-in mouse models for CMTX1 show a loss of function phenotype in the peripheral nervous system. Exp Neurol. 360:114277.
Alexander, A.G., V. Marfil, and C. Li. 2014. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Frontiers in genetics. 5:279.
Amorim, I.S., L.C. Graham, R.N. Carter, N.M. Morton, F. Hammachi, T. Kunath, G. Pennetta,
S.M. Carpanini, J.C. Manson, D.J. Lamont, T.M. Wishart, and T.H. Gillingwater. 2017. Sideroflexin 3 is an alpha-synuclein-dependent mitochondrial protein that regulates synaptic morphology. J Cell Sci. 130:325-331.
Bae, Y.K., J. Lyman-Gingerich, M.M. Barr, and K.M. Knobel. 2008. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Developmental dynamics : an official publication of the American Association of Anatomists. 237:2021-2029.
Bargmann, C.I. 2006. Chemosensation in C. elegans. WormBook : the online review of C. elegans biology:1-29.
Bargmann, C.I., and I. Mori. 1997. Chemotaxis and Thermotaxis. In C. elegans II. D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, editors, Cold Spring Harbor (NY).
Barlan, K., and V.I. Gelfand. 2017. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harbor perspectives in biology. 9.
Barmaver, S.N., M. Muthaiyan Shanmugam, and O.I. Wagner. 2022. Methods to Quantify and Relate Axonal Transport Defects to Changes in C. elegans Behavior. Methods Mol Biol. 2431:481-497.
Bereiter-Hahn, J. 2014. Mitochondrial dynamics in aging and disease. Prog Mol Biol Transl Sci.
127:93-131.
Bhan, P., M. Muthaiyan Shanmugam, D. Wang, O. Bayansan, C.W. Chen, and O.I. Wagner. 2020. Characterization of TAG-63 and its role on axonal transport in C. elegans. Traffic. 21:231- 249.
Bickle, M.B., E. Dusserre, O. Moncorge, H. Bottin, and P. Colas. 2006. Selection and characterization of large collections of peptide aptamers through optimized yeast two- hybrid procedures. Nat Protoc. 1:1066-1091.
Boldogh, I.R., and L.A. Pon. 2007. Mitochondria on the move. Trends Cell Biol. 17:502-510. Bortolozzi, M. 2018. What's the Function of Connexin 32 in the Peripheral Nervous System?
Frontiers in molecular neuroscience. 11:227.
Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics. 77:71-94.
Butler, V.J., D.A. Salazar, D. Soriano-Castell, M. Alves-Ferreira, F.J.A. Dennissen, M. Vohra, J.A. Oses-Prieto, K.H. Li, A.L. Wang, B. Jing, B. Li, A. Groisman, E. Gutierrez, S. Mooney,
A.L. Burlingame, K. Ashrafi, E.M. Mandelkow, S.E. Encalada, and A.W. Kao. 2019. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum Mol Genet. 28:1498-1514.
Byerly, L., R.C. Cassada, and R.L. Russell. 1976. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 51:23-33.
Cai, Q., and Z.H. Sheng. 2009. Mitochondrial transport and docking in axons. Exp Neurol.
218:257-267.
Calvo-Rodriguez, M., and B.J. Bacskai. 2021. Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci. 44:136-151.
Carberry, K., T. Wiesenfahrt, R. Windoffer, O. Bossinger, and R.E. Leube. 2009. Intermediate filaments in Caenorhabditis elegans. Cell Motil Cytoskeleton. 66:852-864.
Cardanho-Ramos, C., A. Faria-Pereira, and V.A. Morais. 2020. Orchestrating mitochondria in neurons: Cytoskeleton as the conductor. Cytoskeleton (Hoboken, N.J.). 77:65-75.
Cason, S.E., and E.L.F. Holzbaur. 2022. Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol.
Chalfie, M. 2014. Assaying mechanosensation. WormBook:1-13.
Chen, C.W., Y.F. Peng, Y.C. Yen, P. Bhan, M. Muthaiyan Shanmugam, D.R. Klopfenstein, and
O.I. Wagner. 2019. Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans. J Neurosci Res. 97:185-201.
Chen, H., and D.C. Chan. 2009. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet. 18:R169-176.
Chen, Y.C., H.R. Huang, C.H. Hsu, and C.Y. Ou. 2021. CRMP/UNC-33 organizes microtubule bundles for KIF5-mediated mitochondrial distribution to axon. PLoS Genet. 17:e1009360.
Cheng, X.T., N. Huang, and Z.H. Sheng. 2022. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron. 110:1899-1923.
Chernoivanenko, I.S., E.A. Matveeva, V.I. Gelfand, R.D. Goldman, and A.A. Minin. 2015. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J. 29:820-827.
Cho, D.H., T. Nakamura, and S.A. Lipton. 2010. Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci. 67:3435-3447.
Coch, R.A., F. Geisler, A. Annibal, A. Antebi, and R.E. Leube. 2020. Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. Int J Mol Sci. 21.
David Raizen, B.-m.S., Nick Trojanowski, Young-Jai You. 2012. Methods for measuring pharyngeal behaviors. Hobert O, ed. Wormbook; . 1:13.
Dayal, A.A., N.V. Medvedeva, T.M. Nekrasova, S.D. Duhalin, A.K. Surin, and A.A. Minin. 2020.
Desmin Interacts Directly with Mitochondria. Int J Mol Sci. 21.
Didonna, A., and P. Opal. 2019. The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Molecular neurodegeneration. 14:19.
Dingley, S., E. Polyak, R. Lightfoot, J. Ostrovsky, M. Rao, T. Greco, H. Ischiropoulos, and M.J. Falk. 2010. Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion. 10:125-136.
Etienne-Manneville, S. 2018. Cytoplasmic Intermediate Filaments in Cell Biology. Annu Rev Cell Dev Biol. 34:1-28.
Fang, E.F., K. Palikaras, N. Sun, E.M. Fivenson, R.D. Spangler, J.S. Kerr, S.A. Cordonnier, Y. Hou, E. Dombi, H. Kassahun, N. Tavernarakis, J. Poulton, H. Nilsen, and V.A. Bohr. 2017. In Vitro and In Vivo Detection of Mitophagy in Human Cells, C. Elegans, and Mice. Journal of visualized experiments : JoVE.
Fire, A. 1986. Integrative transformation of Caenorhabditis elegans. Embo J. 5:2673-2680.
Fort, A.G., J.W. Murray, N. Dandachi, M.W. Davidson, R. Dermietzel, A.W. Wolkoff, and D.C. Spray. 2011. In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem. 286:22875-22885.
Fowler, S.L., M. Akins, H. Zhou, D. Figeys, and S.A. Bennett. 2013. The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res. 12:2597-2610.
Fuchs, F., and B. Westermann. 2005. Role of Unc104/KIF1-related motor proteins in mitochondrial transport in Neurospora crassa. Mol Biol Cell. 16:153-161.
Gallrein, C., M. Iburg, T. Michelberger, A. Kocak, D. Puchkov, F. Liu, S.M. Ayala Mariscal, T. Nayak, G.S. Kaminski Schierle, and J. Kirstein. 2021. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog Neurobiol. 198:101907.
Gentil, B.J., S. Minotti, M. Beange, R.H. Baloh, J.P. Julien, and H.D. Durham. 2012. Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 26:1194-1203.
Gonzalez-Hunt, C.P., A.L. Luz, I.T. Ryde, E.A. Turner, O.R. Ilkayeva, D.P. Bhatt, M.D. Hirschey, and J.N. Meyer. 2021. Multiple metabolic changes mediate the response of Caenorhabditis elegans to the complex I inhibitor rotenone. Toxicology. 447:152630.
Grad, L.I., L.C. Sayles, and B.D. Lemire. 2007. Isolation and functional analysis of mitochondria from the nematode Caenorhabditis elegans. Methods Mol Biol. 372:51-66.
Gruber, J., L.F. Ng, S. Fong, Y.T. Wong, S.A. Koh, C.B. Chen, G. Shui, W.F. Cheong, S. Schaffer,
M.R. Wenk, and B. Halliwell. 2011. Mitochondrial changes in ageing Caenorhabditis elegans--what do we learn from superoxide dismutase knockouts? PloS one. 6:e19444.
Guha, S., G.V.W. Johnson, and K. Nehrke. 2020. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Mol Neurobiol. 57:5103-5120.
Hancock, W.O. 2014. Bidirectional cargo transport: moving beyond tug of war. Nat Rev Mol Cell Biol. 15:615-628.
Harterink, M., S.L. Edwards, B. de Haan, K.W. Yau, S. van den Heuvel, L.C. Kapitein, K.G. Miller, and C.C. Hoogenraad. 2018. Local microtubule organization promotes cargo transport in
C. elegans dendrites. J Cell Sci. 131.
Haycraft, C.J., P. Swoboda, P.D. Taulman, J.H. Thomas, and B.K. Yoder. 2001. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development. 128:1493-1505.
Hirokawa, N. 1982. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94:129-142.
Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 68:610-638.
Hirokawa, N., and Y. Tanaka. 2015. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp Cell Res. 334:16-25.
Hollenbeck, P.J., D. Bray, and R.J. Adams. 1985. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles. Cell Biol Int Rep. 9:193-199. Hollenbeck, P.J., and W.M. Saxton. 2005. The axonal transport of mitochondria. J. Cell Sci.
118:5411-5419.
Hsu, C.C., J.D. Moncaleano, and O.I. Wagner. 2011. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin- alpha) in C. elegans neurons. Neuroscience. 176:39-52.
Hu, C.C., G.H. Wu, T.E. Hua, O.I. Wagner, and T.J. Yen. 2018a. Uptake of TiO2 Nanoparticles into C. elegans Neurons Negatively Affects Axonal Growth and Worm Locomotion Behavior. ACS Appl Mater Interfaces. 10:8485-8495.
Hu, C.C., G.H. Wu, S.F. Lai, M. Muthaiyan Shanmugam, Y. Hwu, O.I. Wagner, and T.J. Yen. 2018b. Toxic Effects of Size-tunable Gold Nanoparticles on Caenorhabditis elegans Development and Gene Regulation. Scientific reports. 8:15245.
Huo, L., Y. Yue, J. Ren, J. Yu, J. Liu, Y. Yu, F. Ye, T. Xu, M. Zhang, and W. Feng. 2012. The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A. Structure. 20:1550-1561.
Ichishita, R., K. Tanaka, Y. Sugiura, T. Sayano, K. Mihara, and T. Oka. 2008. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem. 143:449-454.
Israeli, E., D.I. Dryanovski, P.T. Schumacker, N.S. Chandel, J.D. Singer, J.P. Julien, R.D. Goldman, and P. Opal. 2016. Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet. 25:2143-2157.
Itoh, K., K. Nakamura, M. Iijima, and H. Sesaki. 2013. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 23:64-71.
Jellali, A., M.H. Metz-Boutigue, I. Surgucheva, V. Jancsik, C. Schwartz, D. Filliol, V.I. Gelfand, and A. Rendon. 1994. Structural and biochemical properties of kinesin heavy chain associated with rat brain mitochondria. Cell Motil Cytoskeleton. 28:79-93.
Kamath, R.S., M. Martinez-Campos, P. Zipperlen, A.G. Fraser, and J. Ahringer. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2:RESEARCH0002.
Kaminsky, R., C. Denison, U. Bening-Abu-Shach, A.D. Chisholm, S.P. Gygi, and L. Broday. 2009. SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Developmental cell. 17:724-735.
Kang, J.S., J.H. Tian, P.Y. Pan, P. Zald, C. Li, C. Deng, and Z.H. Sheng. 2008. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 132:137-148.
Karabinos, A., H. Schmidt, J. Harborth, R. Schnabel, and K. Weber. 2001. Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proceedings of the National Academy of Sciences of the United States of America. 98:7863- 7868.
Karabinos, A., E. Schulze, J. Schunemann, D.A. Parry, and K. Weber. 2003. In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J Mol Biol. 333:307-319.
Kern, J.V., Y.V. Zhang, S. Kramer, J.E. Brenman, and T.M. Rasse. 2013. The kinesin-3, unc-104 regulates dendrite morphogenesis and synaptic development in Drosophila. Genetics. 195:59-72.
Klopfenstein, D.R., and R.D. Vale. 2004. The lipid binding pleckstrin homology domain in UNC- 104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol Biol Cell. 15:3729-3739.
Koopman, M., H. Michels, B.M. Dancy, R. Kamble, L. Mouchiroud, J. Auwerx, E.A. Nollen, and
R.H. Houtkooper. 2016. A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nat Protoc. 11:1798-1816.
Kory, N., G.A. Wyant, G. Prakash, J. Uit de Bos, F. Bottanelli, M.E. Pacold, S.H. Chan, C.A. Lewis, T. Wang, H.R. Keys, Y.E. Guo, and D.M. Sabatini. 2018. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 362.
Kumar, J., B.C. Choudhary, R. Metpally, Q. Zheng, M.L. Nonet, S. Ramanathan, D.R. Klopfenstein, and S.P. Koushika. 2010. The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet. 6:e1001200.
Kurup, N., Y. Li, A. Goncharov, and Y. Jin. 2018. Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. Proc Natl Acad Sci U S A. 115:3114-3119.
Kuwahara, T., A. Koyama, S. Koyama, S. Yoshina, C.H. Ren, T. Kato, S. Mitani, and T. Iwatsubo. 2008. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet. 17:2997-3009.
Kwon, Y.J., S. Guha, F. Tuluc, and M.J. Falk. 2018. High-throughput BioSorter quantification of relative mitochondrial content and membrane potential in living Caenorhabditis elegans. Mitochondrion. 40:42-50.
Ledahawsky, L.M., M.E. Terzenidou, R. Edwards, R.A. Kline, L.C. Graham, S.L. Eaton, D. van der Hoorn, H. Chaytow, Y.T. Huang, E.J.N. Groen, A.A.L. Motyl, D.J. Lamont, K. Tokatlidis, T.M. Wishart, and T.H. Gillingwater. 2022. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J. 289:3894-3914.
Lee, J.R., M. Srour, D. Kim, F.F. Hamdan, S.H. Lim, C. Brunel-Guitton, J.C. Decarie, E. Rossignol,
G.A. Mitchell, A. Schreiber, R. Moran, K. Van Haren, R. Richardson, J. Nicolai, K.M. Oberndorff, J.D. Wagner, K.M. Boycott, E. Rahikkala, N. Junna, H. Tyynismaa, I. Cuppen,
N.E. Verbeek, C.T. Stumpel, M.A. Willemsen, S.A. de Munnik, G.A. Rouleau, E. Kim,
E.J. Kamsteeg, T. Kleefstra, and J.L. Michaud. 2015. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Human mutation. 36:69-78.
Lee, Y., B.H. Lee, W. Yip, P. Chou, and B.S. Yip. 2020. Neurofilament Proteins as Prognostic Biomarkers in Neurological Disorders. Curr Pharm Des. 25:4560-4569.
Lehmann, S.M., R.E. Leube, and N. Schwarz. 2020. Keratin 6a mutations lead to impaired mitochondrial quality control. Br J Dermatol. 182:636-647.
Leterrier, J.F., D.A. Rusakov, B.D. Nelson, and M. Linden. 1994a. Interactions between brain mitochondria and cytoskeleton: Evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microscopy Research Technique. 27.
Leterrier, J.F., D.A. Rusakov, B.D. Nelson, and M. Linden. 1994b. Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microscopy research and technique. 27:233-261.
Lewis, T.L., Jr., G.F. Turi, S.K. Kwon, A. Losonczy, and F. Polleux. 2016. Progressive Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo. Curr Biol. 26:2602-2608.
Li, J., and W. Le. 2013. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol. 250:94-103.
Li, Q., A. Lau, T.J. Morris, L. Guo, C.B. Fordyce, and E.F. Stanley. 2004. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24:4070-4081.
Lin, M.Y., and Z.H. Sheng. 2015. Regulation of mitochondrial transport in neurons. Exp Cell Res.
334:35-44.
Lowery, J., N. Jain, E.R. Kuczmarski, S. Mahammad, A. Goldman, V.I. Gelfand, P. Opal, and R.D. Goldman. 2016. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. Mol Biol Cell. 27:608-616.
Maday, S., A.E. Twelvetrees, A.J. Moughamian, and E.L. Holzbaur. 2014. Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation. Neuron. 84:292-309.
Makrecka-Kuka, M., G. Krumschnabel, and E. Gnaiger. 2015. High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. Biomolecules. 5:1319-1338.
Maniar, T.A., M. Kaplan, G.J. Wang, K. Shen, L. Wei, J.E. Shaw, S.P. Koushika, and C.I. Bargmann. 2011. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci. 15:48-56.
Maniar, T.A., M. Kaplan, G.J. Wang, K. Shen, L. Wei, J.E. Shaw, S.P. Koushika, and C.I. Bargmann. 2012. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci. 15:48-56.
Margie, O., C. Palmer, and I. Chin-Sang. 2013. C. elegans chemotaxis assay. Journal of visualized experiments : JoVE:e50069.
Martin Chalfie, A.C.H., Catharine H. Rankin, and Miriam B. Goodman. 2014. Assaying mechanosensation. WormBook, editor.
Martin, L.J. 2010. Mitochondrial pathobiology in Parkinson's disease and amyotrophic lateral sclerosis. J Alzheimers Dis. 20 Suppl 2:S335-356.
Matveeva, E.A., L.S. Venkova, I.S. Chernoivanenko, and A.A. Minin. 2015. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol Open:1-8.
Mello, C.C., J.M. Kramer, D. Stinchcomb, and V. Ambros. 1991. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10:3959-3970.
Minjarez, B., K.G. Calderon-Gonzalez, M.L. Rustarazo, M.E. Herrera-Aguirre, M.L. Labra- Barrios, D.E. Rincon-Limas, M.M. Del Pino, R. Mena, and J.P. Luna-Arias. 2016. Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics. 139:103-121. Morikawa, M., N.U. Jerath, T. Ogawa, M. Morikawa, Y. Tanaka, M.E. Shy, S. Zuchner, and N.
Hirokawa. 2022. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. EMBO J. 41:e108899.
Morris, R.L., and P.J. Hollenbeck. 1995. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol. 131:1315-1326.
Muniesh, M.S., S.N. Barmaver, H.Y. Huang, O. Bayansan, and O.I. Wagner. 2020. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell. 31:2932-2947.
Nekrasova, O.E., M.G. Mendez, I.S. Chernoivanenko, P.A. Tyurin-Kuzmin, E.R. Kuczmarski, V.I. Gelfand, R.D. Goldman, and A.A. Minin. 2011. Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell. 22:2282-2289.
Panchal, K., and A.K. Tiwari. 2019. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion. 47:151-173.
Panchal, K., and A.K. Tiwari. 2021. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion. 56:118-135.
Pozo Devoto, V.M., I.G. Onyango, and G.B. Stokin. 2022. Mitochondrial behavior when things go wrong in the axon. Frontiers in cellular neuroscience. 16:959598.
Ramani, S., J.A. Berard, and L.A.S. Walker. 2021. The relationship between neurofilament light chain and cognition in neurological disorders: A scoping review. Journal of the neurological sciences. 420:117229.
Rivell, A., R.S. Petralia, Y.X. Wang, M.P. Mattson, and P.J. Yao. 2019. Sideroflexin 3 is a Mitochondrial Protein Enriched in Neurons. Neuromolecular Med. 21:314-321.
Rizalar, F.S., D.A. Roosen, and V. Haucke. 2021. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron. 109:27-41.
Sadigh-Eteghad, S., A. Majdi, M. Talebi, J. Mahmoudi, and S. Babri. 2015. Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: a possible role of chaperones. Eur J Pharmacol. 755:34-41.
Sarasija, S., and K.R. Norman. 2018. Analysis of Mitochondrial Structure in the Body Wall Muscle of Caenorhabditis elegans. Bio Protoc. 8.
Sarasija. S, and N. K.R. 2018. Analysis of mitochondrial structure in the body wall muscle of Caenorhabditis elegans. . Bio-protocol. 8:e2801.
Saxton, W.M., and P.J. Hollenbeck. 2012. The axonal transport of mitochondria. J Cell Sci.
125:2095-2104.
Shanmugam, M.M., S.N. Barmaver, H.Y. Huang, O. Bayansan, and O.I. Wagner. 2020. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell:mbcE19100591.
Sheng, Z.H. 2017. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol. 27:403-416.
Sheng, Z.H., and Q. Cai. 2012. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 13:77-93.
Shyu, Y.J., S.M. Hiatt, H.M. Duren, R.E. Ellis, T.K. Kerppola, and C.D. Hu. 2008. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc. 3:588-596.
Simon, J.M., and P.W. Sternberg. 2002. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 99:1598-1603.
Sleigh, J.N., A.M. Rossor, A.D. Fellows, A.P. Tosolini, and G. Schiavo. 2019. Axonal transport and neurological disease. Nat Rev Neurol. 15:691-703.
Smith, E.F., P.J. Shaw, and K.J. De Vos. 2019. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett. 710:132933.
Smolina, N., A. Khudiakov, A. Knyazeva, A. Zlotina, K. Sukhareva, K. Kondratov, V. Gogvadze,
B. Zhivotovsky, T. Sejersen, and A. Kostareva. 2020. Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochim Biophys Acta Mol Basis Dis. 1866:165745.
Solinger, J.A., R. Paolinelli, H. Kloss, F.B. Scorza, S. Marchesi, U. Sauder, D. Mitsushima, F. Capuani, S.R. Sturzenbaum, and G. Cassata. 2010. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation. PLoS Genet. 6:e1000820.
Steen, K., D. Chen, F. Wang, R. Majumdar, S. Chen, S. Kumar, D.B. Lombard, R. Weigert, A.G. Zieman, C.A. Parent, and P.A. Coulombe. 2020. A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Mol Biol Cell. 31:1103- 1111.
Stefanakis, N., I. Carrera, and O. Hobert. 2015. Regulatory Logic of Pan-Neuronal Gene Expression in C. elegans. Neuron. 87:733-750.
Sui, Y., H.B. Nguyen, T.Q. Thai, K. Ikenaka, and N. Ohno. 2019. Mitochondrial Dynamics in Physiology and Pathology of Myelinated Axons. Advances in experimental medicine and biology. 1190:145-163.
Tanaka, K., Y. Sugiura, R. Ichishita, K. Mihara, and T. Oka. 2011. KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci. 124:2457-2465.
Tang, H.L., H.L. Lung, K.C. Wu, A.H. Le, H.M. Tang, and M.C. Fung. 2008. Vimentin supports mitochondrial morphology and organization. The Biochemical journal. 410:141-146.
Tien, N.W., G.H. Wu, C.C. Hsu, C.Y. Chang, and O.I. Wagner. 2011. Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis. 43:495-506.
Uchida, A., N.H. Alami, and A. Brown. 2009. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell. 20:4997-5006.
Wagner, O.I., A. Esposito, B. Kohler, C.W. Chen, C.P. Shen, G.H. Wu, E. Butkevich, S. Mandalapu, D. Wenzel, F.S. Wouters, and D.R. Klopfenstein. 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proc Natl Acad Sci U S A. 106:19605-19610.
Wagner, O.I., J. Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, and J.F. Leterrier. 2003.
Mechanisms of mitochondria-neurofilament interactions. J Neurosci. 23:9046-9058.
Ward, S., D.J. Burke, J.E. Sulston, A.R. Coulson, D.G. Albertson, D. Ammons, M. Klass, and E. Hogan. 1988. Genomic organization of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans. J Mol Biol. 199:1-13.
Winter, L., C. Abrahamsberg, and G. Wiche. 2008. Plectin isoform 1b mediates mitochondrion- intermediate filament network linkage and controls organelle shape. J Cell Biol. 181:903- 911.
Woo, W.M., A. Goncharov, Y. Jin, and A.D. Chisholm. 2004. Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol. 267:216-229.
Wu, G.H., M. Muthaiyan Shanmugam, P. Bhan, Y.H. Huang, and O.I. Wagner. 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kinesin-3 UNC- 104(KIF1A) Motility and Clustering in Neurons. Traffic. 17:891-907.