研究生: |
黃國晏 Huang, Kuo-Yen |
---|---|
論文名稱: |
量子點敏化太陽能電池光陽極材料之研究 The Study of Photoanode materials for High-Efficiency Quantum Dot Sensitized Solar Cells |
指導教授: |
黃金花
Huang, Jin Hua |
口試委員: |
甘炯耀
Gan, Jon-Yiew 陳嘉勻 Chen, Chia-Yun 陳翰儀 Chen, Han-Yi 黃宗鈺 Huang, Tsung-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 量子點敏化太陽能電池 、二氧化鈦奈米板 、硫化鎘/硒化鎘 、氧化鋅四足結構 、電化學阻抗分析 、時間解析螢光量測 |
外文關鍵詞: | quantum dot sensitized solar cells, CdS/CdSe, ZnO tetrapod, TiO2 nanosheet, electrochemical impedance spectroscopy, time-resolved fluorescence measurement |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究探討串接式CdS/CdSe量子點的載子動力學以及不同奈米氧化物材料對CdS/CdSe量子點敏化太陽能電池(QDSSCs)光電轉換效益影響。
首先使用連續離子吸附反應法(SILAR)和化學浴沉積法(CBD),分兩階段成長串接式CdS/CdSe量子點。透過時間解析共軛焦螢光顯微系統以及飛秒瞬態吸收光譜儀分析,發現第一階段成長的CdS可有效遏制主要吸收層CdSe成長所產生的接面缺陷,且CdS/CdS所形成之階梯狀的能帶結構能夠有效增強光電子的注入及分離。進一步使用CdS/CdSe量子點搭配tetrapod-like氧化鋅 (t-ZnO) 奈米顆粒光陽極材料,製備成三明治結構的QDSSCs,並對電池元件量子點、光陽極膜厚、及電解液等進行一連串的優化,最終可以得到4.24%光電轉換效率。
研究第二部分以水熱法合成高比率(001)面的TiO2奈米板 (Nanosheets, NSs) 作為QDSSCs的光陽極材料,對比商用P-25 TiO2 奈米顆粒(nanoparticles, NPs),同樣採用CdS/CdSe QDs作為光敏化材料,結果顯示高比例(001)面TiO2 NSs製備的電極元件在單位比表面積、孔隙度、及QDs吸附量等參數都有明顯提升。透過電化學阻抗分析儀做進一步分析,結果也顯示結晶性良好的二維結構能夠提供光電子較佳的傳輸效率,而良好的QDs吸附也減少TiO2/電解液接面電子再復合機率,最終元件光電轉換效率可達4.42%,對比P-25 NPs元件有54%提升。
Abstract
This thesis studied the carrier dynamics in cascade CdS/CdSe quantum dots and explored various metal oxide nanostructures for high-efficiency CdS/CdSe quantum dot sensitized solar cells.
The cascade CdS/CdSe quantum dots were synthesized via the successive ionic layer absorption and reaction (SILAR) and chemical bath deposition (CBD) processes. Analyses based on the femtosecond transient absorption and fluorescence decay measurements revealed that the preliminary CdS layer was not only energetically favorable to electron transfer but also behaved as a passivation layer to diminish the formation of interfacial defects during CdSe synthesis. The cascade CdS/CdSe quantum dots were then applied to the novel tetrapod-like ZnO nanoparticles to construct quantum dot-sensitized solar cells (QDSSCs). The cascade CdS/CdSe co-sensitized QDSSCs manifested better electron transfer dynamics and overall power conversion efficiency, compared to single CdS- or CdSe-sensitized cells. The resultant solar cell yielded a solar power conversion efficiency of 4.24% under simulated one sun (AM1.5G, 100 mW cm−2) illumination.
In the second part of the research, CdS/CdSe quantum dot-sensitized solar cells (QDSSCs) were fabricated on two types of TiO2 photoanodes, namely nanosheets (NSs) and nanoparticles. The TiO2 NSs with high (001)-exposed facets were prepared via a hydrothermal method, while the TiO2 nanoparticles used the commercial Degussa P-25. It was found that the pore size, specific surface area, porosity, and electron transport properties of TiO2 NSs were generally superior to those of P-25. As a result, the TiO2 NSs-based CdS/CdSe QDSSC has exhibited a power conversion efficiency of 4.42%, which corresponds to a 54% improvement in comparison with the P-25-based reference cell. This study provides an effective photoanode design using nanostructure approach to improve the performance of TiO2-based QDSSCs.
6. Reference
1. Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005. 44(20): p. 6841.
2. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510.
3. Araujo, G.L. and A. Marti, Absolute Limiting Efficiencies for Photovoltaic Energy-Conversion. Solar Energy Materials and Solar Cells, 1994. 33(2): p. 213.
4. Yu, W.W., et al., Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 2003. 15(14): p. 2854.
5. Brus, L., Electronic Wave-Functions in Semiconductor Clusters - Experiment and Theory. Journal of Physical Chemistry, 1986. 90(12): p. 2555.
6. Brus, L.E., Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 1984. 80(9): p. 4403.
7. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996. 271(5251): p. 933.
8. Nozik, A.J., Quantum dot solar cells. Physica E-Low-Dimensional Systems & Nanostructures, 2002. 14(1-2): p. 115.
9. Ross, R.T. and A.J. Nozik, Efficiency of hot‐carrier solar energy converters. Journal of Applied Physics, 1982. 53(5): p. 3813.
10. Edvinsson, T., Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. Royal Society Open Science, 2018. 5(9): p. 180387.
11. Brus, L.E., A Simple-Model for the Ionization-Potential, Electron-Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites. Journal of Chemical Physics, 1983. 79(11): p. 5566.
12. Davis, N.J., et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120. Nature Communications, 2015. 6: p. 8259.
13. Beard, M.C., Multiple Exciton Generation in Semiconductor Quantum Dots. The Journal of Physical Chemistry Letters, 2011. 2(11): p. 1282.
14. Luque, A., A. Martí, and A.J. Nozik, Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands. MRS Bulletin, 2011. 32(03): p. 236.
15. Berkelbach, T.C., M.S. Hybertsen, and D.R. Reichman, Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. Journal of Applied Physics, 2013. 138(11): p. 114103.
16. Grimaldi, G., et al., Hot-electron transfer in quantum-dot heterojunction films. Nature Communications, 2018. 9(1): p. 2310.
17. Tisdale, W.A., et al., Hot-electron transfer from semiconductor nanocrystals. Science, 2010. 328(5985): p. 1543.
18. Li, H., W.Y. Shih, and W.H. Shih, Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Industrial & Engineering Chemistry Research, 2007. 46(7): p. 2013.
19. Kloepfer, J.A., S.E. Bradforth, and J.L. Nadeau, Photophysical properties of biologically compatible CdSe quantum dot structures. The Journal of Physical Chemistry B, 2005. 109(20): p. 9996.
20. Zhang, H., et al., Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. Journal of the American Chemical Society, 2006. 128(31): p. 10171.
21. Chen, H.-S., et al., Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO. The Journal of Physical Chemistry B, 2004. 108(44): p. 17119.
22. McDonald, S.A., et al., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005. 4(2): p. 138.
23. Lipovskii, A., et al., Synthesis and characterization of PbSe quantum dots in phosphate glass. Applied Physics Letters, 1997. 71(23): p. 3406.
24. Dennis, A.M., et al., Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Letters, 2012. 12(11): p. 5545.
25. Rudolph, D., et al., Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Letters, 2011. 11(9): p. 3848.
26. Pons, T., et al., Synthesis of Near-Infrared-Emitting, Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots. Chemistry of Materials, 2009. 21(8): p. 1418.
27. Panda, S.K., et al., Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. Journal of Materials Chemistry, 2011. 21(31).
28. Pisanic, T.R., 2nd, Y. Zhang, and T.H. Wang, Quantum dots in diagnostics and detection: principles and paradigms. Analyst, 2014. 139(12): p. 2968.
29. Murphy, C.J., Peer Reviewed: Optical Sensing with Quantum Dots. Analytical Chemistry, 2002. 74(19): p. 520 A.
30. Zhu, H., N. Song, and T. Lian, Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. Journal of the American Chemical Society, 2010. 132(42): p. 15038.
31. Ryu, E., et al., Step-Wise Synthesis of InP/ZnS Core−Shell Quantum Dots and the Role of Zinc Acetate. Chemistry of Materials, 2009. 21(4): p. 573.
32. Kim, S., et al., Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. Journal of the American Chemical Society, 2003. 125(38): p. 11466.
33. Zeng, R., et al., Aqueous synthesis of type-II CdTe/CdSe core-shell quantum dots for fluorescent probe labeling tumor cells. Nanotechnology, 2009. 20(9): p. 095102.
34. Wang, C.H., et al., Resonant Energy Transfer between CdSe/ZnS Type I and CdSe/ZnTe Type II Quantum Dots. Journal of Physical Chemistry C, 2009. 113(35): p. 15548.
35. Efros, A.L., Nanocrystals: Almost always bright. Nature Materials, 2008. 7(8): p. 612.
36. Nirmal, M., et al., Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996. 383(6603): p. 802.
37. Efros, A.L. and D.J. Nesbitt, Origin and control of blinking in quantum dots. Nature Nanotechnology, 2016. 11(8): p. 661.
38. Yuan, G., et al., Two Mechanisms Determine Quantum Dot Blinking. ACS Nano, 2018. 12(4): p. 3397.
39. Efros, A.L. and M. Rosen, Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot. Physical Review Letters, 1997. 78(6): p. 1110.
40. Kuno, M., et al., Modeling distributed kinetics in isolated semiconductor quantum dots. Physical Review B, 2003. 67(12).
41. Shimizu, K.T., et al., Blinking statistics in single semiconductor nanocrystal quantum dots. Physical Review B, 2001. 63(20).
42. Tang, J. and R.A. Marcus, Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Physical Review Letters, 2005. 95(10): p. 107401.
43. Htoon, H., et al., Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Physical Review Letters, 2003. 91(22): p. 227401.
44. Klimov, V.V., et al., Quantization of multiparticle auger rates in semiconductor quantum dots. Science, 2000. 287(5455): p. 1011.
45. Klimov, V.I., et al., Scaling of multiexciton lifetimes in semiconductor nanocrystals. Physical Review B, 2008. 77(19).
46. Chen, Y., et al., "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. Journal of the American Chemical Society, 2008. 130(15): p. 5026.
47. Wang, X., et al., Non-blinking semiconductor nanocrystals. Nature, 2009. 459(7247): p. 686.
48. Hollingsworth, J.A., Heterostructuring Nanocrystal Quantum Dots Toward Intentional Suppression of Blinking and Auger Recombination. Chemistry of Materials, 2013. 25(8): p. 1318.
49. Grimme, S., et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Physical Chemistry, 2010. 132(15): p. 154104.
50. Hamada, M., et al., Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano, 2010. 4(8): p. 4445.
51. Yuan, C.-T., et al., Single-Particle Studies of Band Alignment Effects on Electron Transfer Dynamics from Semiconductor Hetero-nanostructures to Single-Walled Carbon Nanotubes. ACS Nano, 2011. 6(1): p. 176.
52. Beard, M.C., et al., Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Accounts of Chemical Research, 2013. 46(6): p. 1252.
53. Goodwin, H., et al., Multiple exciton generation in quantum dot-based solar cells. Nanophotonics, 2018. 7(1): p. 111.
54. Wang, X.H., et al., Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011. 5(8): p. 480.
55. Emin, S., et al., Colloidal quantum dot solar cells. Solar Energy, 2011. 85(6): p. 1264.
56. Kramer, I.J. and E.H. Sargent, Colloidal quantum dot photovoltaics: a path forward. ACS Nano, 2011. 5(11): p. 8506.
57. Debnath, R., et al., Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. Journal of the American Chemical Society, 2010. 132(17): p. 5952.
58. Luther, J.M., et al., Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 2008. 8(10): p. 3488.
59. Azmi, R., S.-H. Oh, and S.-Y. Jang, High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions. ACS Energy Letters, 2016. 1(1): p. 100.
60. Zhang, J., et al., PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Letters, 2014. 14(10): p. 6010.
61. Pattantyus-Abraham, A.G., et al., Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010. 4(6): p. 3374.
62. Kim, G.H., et al., High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015. 15(11): p. 7691.
63. Lan, X., et al., Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advance Materials, 2013. 25(12): p. 1769.
64. Zhao, X., et al., Interdigitated CuS/TiO 2 Nanotube Bulk Heterojunctions Achieved via Ion Exchange. Electrochimica Acta, 2016. 199: p. 180.
65. Atomsa Gonfa, B., et al., Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core–shell quantum dots and TiO2 nanorod arrays. Solar Energy Materials and Solar Cells, 2014. 124: p. 67.
66. Chang, J., et al., High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation. Nanoscale, 2015. 7(12): p. 5446.
67. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338.
68. Hossain, M.A., et al., Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano, 2011. 5(4): p. 3172.
69. Lee, Y.L. and C.H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources, 2008. 185(1): p. 584.
70. Leschkies, K.S., et al., Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Letters, 2007. 7(6): p. 1793.
71. Hod, I., et al., Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process. Journal of Physical Chemistry Letters, 2011. 2(24): p. 3032.
72. Braga, A., et al., Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes. Journal of Physical Chemistry Letters, 2011. 2(5): p. 454.
73. Lee, Y.L. and Y.S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials, 2009. 19(4): p. 604.
74. Yang, J. and X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media. Journal of Materials Chemistry A, 2016. 4(42): p. 16553.
75. Kim, H.-J., et al., ZnS/SiO2 Passivation Layer for High-Performance of TiO2/CuInS2 Quantum Dot Sensitized Solar Cells. Energies, 2018. 11(8).
76. Huang, F., et al., A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells. Journal of Materials Chemistry A, 2016. 4(38): p. 14773.
77. Sogabe, T., Q. Shen, and K. Yamaguchi, Recent progress on quantum dot solar cells: a review. Journal of Photonics for Energy, 2016. 6(4).
78. Pan, Z., et al., Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018. 47(20): p. 7659.
79. Zhou, R., et al., Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochimica Acta, 2014. 135: p. 284.
80. Rao, H.-S., et al., CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy, 2014. 8: p. 1.
81. Li, C., et al., ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2013. 15(22): p. 8710.
82. Seol, M., et al., Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chemical Communications, 2010. 46(30): p. 5521.
83. Lee, J.W., et al., Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Scientific Reports, 2013. 3: p. 1050.
84. Du, Z., et al., Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. The Journal of Physical Chemistry Letters, 2016. 7(16): p. 3103.
85. Wang, W., et al., Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12. Advance Materials, 2018. 30(11).
86. Lee, H., et al., PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”. Advanced Functional Materials, 2009. 19(17): p. 2735.
87. Chen, Y.S., H. Choi, and P.V. Kamat, Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. journal of the American Chemical Society, 2013. 135(24): p. 8822.
88. Li, L., et al., Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. J Am Chem Soc, 2011. 133(22): p. 8458.
89. Huang, K.Y., et al., Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO2 Nanosheets Photoanode. Nanoscale Res Lett, 2019. 14(1): p. 18.
90. Cheng, H.-M., et al., High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles. Physical Chemistry Chemical Physics, 2012. 14(39).
91. https://www.picoquant.com/.
92. http://ncu.rcnpv.com.tw/index.php.
93. Lin, H.-F., S.-C. Liao, and S.-W. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005. 174(1): p. 82.
94. Roy, N., Y. Sohn, and D. Pradhan, Synergy of low-energy {101} and high-energy {001} TiO(2) crystal facets for enhanced photocatalysis. ACS Nano, 2013. 7(3): p. 2532.
95. Chen, J.S., et al., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society, 2010. 132(17): p. 6124.
96. Yu, J.G., L.F. Qi, and M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. Journal of Physical Chemistry C, 2010. 114(30): p. 13118.
97. Esparza, D., et al., Effect of Different Sensitization Technique on the Photoconversion Efficiency of CdS Quantum Dot and CdSe Quantum Rod Sensitized TiO2 Solar Cells. The Journal of Physical Chemistry C, 2015. 119(24): p. 13394.
98. Wang, H., et al., In Situ versus ex Situ Assembly of Aqueous-Based Thioacid Capped CdSe Nanocrystals within Mesoporous TiO2 Films for Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry C, 2011. 116(1): p. 484.
99. Niitsoo, O., et al., Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 2006. 181(2-3): p. 306.
100. Guijarro, N., et al., Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2011. 13(25): p. 12024.
101. Chi, C.F., et al., Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2011. 21(43): p. 17534.
102. Yang, Z., et al., Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chem Commun (Camb), 2010. 46(30): p. 5485.
103. Yang, Z.S., et al., Quantum Dot-Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency. Advanced Energy Materials, 2011. 1(2): p. 259.
104. Chen, L.Y., et al., Cascade quantum dots sensitized TiO2 nanorod arrays for solar cell applications. Nanoscale, 2011. 3(12): p. 4940.
105. Seol, M., et al., Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. Journal of Physical Chemistry C, 2011. 115(44): p. 22018.
106. Lee, H.J., et al., Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes. Chemistry of Materials, 2010. 22(19): p. 5636.
107. Qiu, X.K., et al., ZnO/CdS/CdSe core/double shell nanorod arrays derived by a successive ionic layer adsorption and reaction process for quantum dot-sensitized solar cells. Semiconductor Science and Technology, 2011. 26(9).
108. Chen, J., et al., Co-sensitized quantum dot solar cell based on ZnO nanowire. Applied Surface Science, 2010. 256(24): p. 7438.
109. Zewdu, T., et al., Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells. Energy & Environmental Science, 2011. 4(11): p. 4633.
110. Mora-Sero, I. and J. Bisquert, Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2010. 1(20): p. 3046.
111. Liao, Y., et al., Enhancing the efficiency of CdS quantum dot-sensitized solar cells via electrolyte engineering. Nano Energy, 2015. 11: p. 88.
112. Chiu, W.H., et al., Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy & Environmental Science, 2009. 2(6): p. 694.
113. Robel, I., M. Kuno, and P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 2007. 129(14): p. 4136.
114. Anderson, N.A. and T. Lian, Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annual Review of Physical Chemistry 2005. 56: p. 491.
115. Hodes, G., Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells. Journal of Physical Chemistry C, 2008. 112(46): p. 17778.
116. Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer. Journal of Physical Chemistry B, 2002. 106(2): p. 325.
117. Bisquert, J., Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics, 2003. 5(24): p. 5360.
118. Bisquert, J., et al., Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. Journal of the American Chemical Society, 2004. 126(41): p. 13550.
119. Wang, Q., J.E. Moser, and M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B, 2005. 109(31): p. 14945.
120. Wang, Q., et al., Characteristics of high efficiency dye-sensitized solar cells. The Journal of Physical Chemistry B, 2006. 110(50): p. 25210.
121. Adachi, M., et al., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B, 2006. 110(28): p. 13872.
122. Gonzalez-Pedro, V., et al., Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 2010. 4(10): p. 5783.
123. Kong, E.H., et al., Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2012. 14(13): p. 4620.
124. Zhang, Q., et al., Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Physical Chemistry Chemical Physics, 2012. 14(18): p. 6479.
125. You, T., et al., Improving the performance of quantum dot-sensitized solar cells by using TiO2 nanosheets with exposed highly reactive facets. Nanotechnology, 2013. 24(24): p. 245401.
126. Huang, F., et al., Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy, 2016. 26: p. 114.
127. Wang, J., et al., Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A, 2016. 4(3): p. 877.
128. Pawar, S.A., et al., Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure. Electrochimica Acta, 2016. 203: p. 74.